Рис. 2-59. Несимметричная нагрузка трансформатора при соединении его обмоток Y/Y0.
Согласно этой схеме напишем уравнения токов:
Система вторичных токов согласно (2-138) имеет составляющие нулевой последовательности
Соотношения между первичными и вторичными токами определяются следующим образом.
Обратимся к рис. 2-60, где схематически изображен трансформатор с условными положительными направлениями токов в его обмотках.
Рис. 2-60. К определению соотношений между первичными и вторичными токами.
Так как мы пренебрегаем током холостого хода, то согласно закону полного тока полный ток сквозь любой магнитный контур по сердечнику (например, показанный пунктиром на рис. 2-60) равен нулю. Поэтому, считая w1 = w2, мы можем написать для контуров, образованных стержнями А — В и А — С и соответствующими ярмами, уравнения:
Из этих уравнений и уравнений (2-148) и (2-149) получаем:
Заменяя токи их симметричными составляющими и учитывая (2-150), будем иметь:
Из (2-154) следует, что в трансформаторе при данном соединении его обмоток трансформируются только токи прямой и обратной последовательностей, токи же нулевой последовательности будут иметь место только во вторичной обмотке. Поэтому в магнитном контуре, проходящем по любому из стержней сердечника и вне его, н.с. обмоток не будут уравновешены. Здесь возникает магнитное поле, созданное н. с. Ia0. На рис. 2-61 показана приближенная картина этого поля масляного трансформатора.
Рис. 2-61. Приближенная картина поля, созданной токами нулевой последовательности.
Мы можем считать, что в стержнях трансформатора имеют место потоки нулевой последовательности Ф0, созданные токами нулевой последовательности и накладывающиеся на потоки в стержнях
На рис. 2-62 представлена диаграмма э.д.с., наведенных в фазах обмоток указанными потоками.
Рис. 2-62. Векторная диаграмма э.д.с. в oбмотках трансформатора при несимметричной нагрузке.
Теперь уравнения напряжений для первичной обмотки напишутся следующим образом:
Заменим
где Z0 = r0 + jx0 — полное сопротивление нулевой последовательности (x0 обусловлено полем тока Ia0, а r0 — магнитными потерями от этого поля).
Сложив уравнения (2-156) и, учитывая при этом (2-155), (2-148) и (2-157), получим:
Для линейных (междуфазных) напряжений можем написать:
Отсюда с учетом (2-158) получим:
В соответствии с (2-160) на рис. 2-63 построена векторная диаграмма первичных напряжений.
Рис. 2-63. Векторная диаграмма первичных напряжений.
Из нее мы видим, что вследствие наличия токов нулевой последовательности потенциал нулевой точки первичной обмотки сместился на величину
Учитывая (2-160) в (2-154) напишем уравнения напряжений для вторичной обмотки:
или, так как
где
Для двух других фаз уравнения напряжений напишутся аналогично:
Уравнения (2-161), (2-163) и (2-164) показывают, что смещение потенциала нулевой точки вторичной обмотки, вызванное токами нулевой последовательности, равно
Если первичные линейные напряжения образуют симметричную систему, то, очевидно, и фазные напряжения
В системе фазных вторичных напряженна мы будем иметь, как это следует из (2-161), (2-163) и (2-164), все три симметричные составляющие:
Если поставить условием, чтобы было
Для расчета сопротивления нулевой последовательности zн мы не имеем надежных методов, однако опытным путем величина zн определяется достаточно точно. Для этого нужно собрать схему, показанную на рис. 2-64. Вторичная обмотка должна быть присоединена к источнику однофазного тока. Ток в ее фазах будет соответствовать току нулевой последовательности. Следовательно, измерив ток I, напряжение U и мощность P при разомкнутой первичной обмотке (рубильник разомкнут), найдем