Смекни!
smekni.com

Трансформаторы 4 (стр. 15 из 22)

Рис. 2-57. Схема для определения токов параллельно работающих трансформаторов.

Значение разности углов (φкII – φкI) в обычных случаях (если мощности параллельно работающих трансформаторов не сильно отличаются одна от другой) близко к нулю.

Переходя от отношения комплексов к отношению их модулей, имеем:

Если обе части равенства умножить на

и левую часть, кроме того, на
, то получим:

Из полученного соотношения следует, что мощности параллельно работающих трансформаторов, выраженные в долях их номинальных мощностей, относятся друг к другу, как обратные значения номинальных напряжений короткого замыкания. Если uкI

uкII, то относительная нагрузка будет больше у того трансформатора, у которого uк меньше. Практически допускается различие между номинальными напряжениями короткого замыкания трансформаторов, включаемых на параллельную работу, в ±10% от их среднего значения.

Приведенные выводы могут быть распространены на любое число параллельно, работающих трансформаторов.

При включении на параллельную работу трехобмоточных трансформаторов необходимо соблюдение указанных условий для соответствующих пар обмоток обоих трансформаторов и, кроме того, необходимо, чтобы оба трансформатора имели одинаковое расположение вторичных обмоток относительно первичной. При включении двухобмоточного трансформатора на параллельную работу с трехобмоточным должны быть соблюдены те же условия для двухобмоточного трансформатора и соответствующих двух обмоток трехобмоточного трансформатора и, кроме того, последний должен иметь двустороннее расположение вторичных обмоток относительно первичной (§ 2-17).

2-19. Несимметричная нагрузка трехфазных трансформаторов

В обычных условиях эксплуатации трехфазной сети нагрузку удается распределить достаточно равномерно на все три фазы Однако бывают случаи, когда нагрузки фаз сильно отличаются одна от другой, например при питании мощных однофазных печей При этом системы токов и напряжений получаются несимметричными. Резко несимметричную систему токов получим, очевидно, при несимметричных коротких замыканиях: двухфазном и однофазном.

При исследовании работы трансформаторов, имеющих несимметричную нагрузку, применяется метод симметричных составляющих. Он также широко применяется при исследовании несимметричных режимов работы трехфазных генераторов и двигателей и позволяет наиболее просто и достаточно точно разрешить многие из возникающих при этом вопросов.

а) Метод симметричных составляющих.

Мы здесь сообщим краткие сведения о методе симметричных составляющих. Сущность этого метода состоит в том, что каждый фазный ток (или фазное напряжение) заменяется тремя его составляющими:

(2-135)

(2-136)

(2-137)

Величины

принимаются равными друг другу и равными одной трети суммы фазных токов:

(2-138)

Эти величины называются составляющими нулевой последовательности, так как они образуют три равных временных вектора с нулевым сдвигом между ними.

Если из каждого тока данной несимметричной системы вычесть его нулевую составляющую, то получим новую систему токов, сумма которых согласно (2-138) равна нулю:

(2-139)

Учитывая теперь (2-135) — (2-137), можем написать:

(2-140)

Здесь системы токов, стоящих в скобках, будем считать трехфазными симметричным системами. Однако, если принять, что порядки чередования фаз той и другой систем одинаковы, то их сумма даст симметричную систему, что в общем случае не будет соответствовать системе токов уравнения (2-139). Следовательно, мы должны считать, что одна из систем токов (2-140) имеет порядок чередования фаз, обратный по отношению к порядку чередования фаз другой. В соответствии с этим система токов

называется системой прямой последовательности [порядок чередования этих токов обычно такой же, как и токов уравнения (2-139)], а система токов
— системой обратной последовательности.

Для удобства вычислений вводится комплексный коэффициент

(2-141)

Умножение вектора на этот коэффициент не изменяет его абсолютного значения, но изменяет его аргумент на

т. е. поворачивает вектор на угол
в сторону вращения векторов. Очевидно, что умножение на а2 дает поворот вектора на угол
в ту же сторону. Также очевидно, что

(2-142)

Уравнения (2-135) — (2-137) после введения в них коэффициентов а и а2 и с учетом (2-138) перепишем в следующем виде

(2-143)

(2-144)

(2-145)

Написанные уравнения позволяют при заданных токах найти их симметричные составляющие. Составляющие нулевой последовательности

определяются по (2-138). Составляющие прямой и обратной последовательно­стей определяются следующим образом.

Умножим (2-144) на а и (2-145) на а2. Сложив полученные уравнения с (2-143) и учитывая (2-142), будем иметь:

(2-146)

Если умножить (2-144) на а2 и (2-145) на а, то, сложив три уравнения, получим:

(2-147)

Таким образом, по (2-138), (2-146) и (2-147) при заданных токах

могут быть определены их симметричные составляющие (на рис 2-58 показаны токи
и их симметричные составляющие).

Рис. 2-58. Несимметричная система таков

и их симметричные составляющие.

Аналогичные уравнения получаются для симметричных составляющих заданной системы напряжений

Фазные токи или напряжения в общем случае имеют составляющие всех трех последовательностей: линейные токи (при соединении треугольником) и напряжения могут иметь только составляющие прямой и обратной последовательностей.

В обычных случаях системы симметричных составляющих токов или напряжений можно рассматривать независимо одна от другой и при исследовании несимметричной нагрузки исходить из принципа наложения. Если, например, трехфазная система сопротивлений симметрична, то можно считать, что токи любой последовательности вызовут падения напряжения — активные и реактивные — только той же самой последовательности. В применении к трехфазным трансформаторам мы должны считать Z12= const, т. е пренебречь изменением насыщения, или считать Z12 = ∞, т е. пренебречь током холостого хода.

б) Несимметричная нагрузка трехфазного трансформатора при соединении его обмоток Y/Y0.

Будем пренебрегать током холостого хода при всех случаях несимметричной нагрузки трансформатора и при всех соединениях его обмоток и будем считать, что нам заданы линейные первичные напряжения и вторичные токи.

В трансформаторах сопротивления Z1, Z2 и Zк для токов прямой последовательности равны тем же сопротивлениям для токов обратной последовательности Это следует из того, что сопротивления трансформатора не изменятся, если мы при его симметричной нагрузке поменяем местами два провода на его первичной стороне.

Рассматриваемому здесь случаю соответствует схема, показанная на рис 2-59.