Смекни!
smekni.com

Высокотемпературная сверхпроводимость 2 (стр. 4 из 7)

гс×см2. (1.5.2)

На переферії кожної окремої трубки протікає вихрь надструму, який зжимає в центральній області магнітний поток, рівний одному кванту потоку Ф0. На існування кванта магнітного потоку вперше звернув увагу Ф. Лондон в 1950 році. Без врахування куперовського спарювання його квант в два рази перевищував Ф0.

Слабкі магнітні поля ( <Hc1 ) не проникають всередену зразка, тобто існує ефект Мейснера. В цьому випадку власна енергія вихря перевищує магнітну енергію, яка виникає при проникненні одного кванта магнітного потоку всередену надпровідника. Ця енергія вирювнюється в полі Н=Нс1. При Н>Нс1 магнітні вихрі починають проникати в надпровідник, розташовуючись паралельно зовнішнньому магнітному полю. Розрахунки показують [ 17 ], що нитки починають утворюватись, коли напруженність поля Н>Нс1 досягає значення

. (1.5.3)

При дальшому збільшенні поля проникання магнітного потоку всередену зразка відбувається у вигляді віддалених одної від одної вихрьових ниток, створюючих структуру типу гратки з дуже великим періодом. В полях, близьких Нс2 , в вузлах решітки поле Y2 рівне нулю, а магнітне поле має максимальне значення і практично відсутнє в проміжках між нитками ( надпровідна фаза ).

При достатньому віддалені ниток однієї від одної їх можна вважати незалежними і розглядати одну окрему нитку. По структурі вихрьова нитка складається в основному з двох областей: центральної циліндричної області з діаметром, приблизно рівним довжині когерентності x0. В цій області густина надпровідних електронів

виростає від нуля до одиниці. Цю внутрішню область охоплює зовнішня циліндрична область, з радіусом порядка глибини проникнення L, магнітного поля. В цій області циркулюють незатухаючі струми, необхідні для створення одного кванту Ф0 магнітного потоку. Структура ізольованої вихрьової нитки показана на рис.1.5.2.

Рис.1.5.2. Ізольована вихрьова нитка Абрикосова: Вz-лінії магнітного поля; jj-замкнуті лінії надпровідного струму.

Енергія одиниці довжини нитки визначається виразом

(1.5.4)

Випливає, що без врахування взаємодії ниток енергія N вихрьових ниток, які перетинають одиницю площі, рівна NeS. Вільна енергія надпровідника визначається виразом

. (1.5.5)

При слабкому зовнішньому полі вільна енергія F додатня і утворення вихрів невигідно, але при H³HФ, де HФ визначено рівністю (1.5.3), вона стає від’ємною і утворення вихрів вигідно.

Якщо в нульовому магнітному полі Fn - густина енергії нормального стану, а Fs0 - густина енергії надпровідного змішаного стану надпровідника другого роду, їх різниця визначає так зване критичне термомагнітне поле за допомогою рівності:

. (1.5.6)

Для надпровідників першого роду це співвідношення визначає істинне критичне поле Нстс. Для надпровідників другого роду значення Нст характеризує тільки допоміжну величину.

Умова термодинамічної рівноваги змішаного стану надпровідника другого роду зводиться до вимоги, щоб поле в його нормальній фазі було рівним критичному термодинамічному полю Нст. Це поле виражається через параметри L, x-0 і Ф0 рівністю

(1.5.7)

Друге критичне поле Нс2 надпровідника другого роду пов’язане з полем Нст співвідношенням

(1.5.8)

Для матеріалів з довжиною когерентності x-0 надпровідність зберігається до дуже великих значень поля Нс2. Наприклад, в сплаві V3Ga при Т=0 критичне поле Нс2=3×105 гс.

В полях Н, які неперевищують друге критичне поле, магнітне поле не витісняється з циліндричного зразка. Однак, в області полів Н, які задовільняють нерівності Hc1<H<Hc2, на поверхні циліндра зберігається надпровідність в тонкому шарі ( ~ 103 А ). Поле Нс3 називається третім критичним полем. За звичай Нс3=1,69 Hc2. По зовнішній і внутрішній поверхні цього надпровідника протікають в протилежних напрямках надпровідні струми.

При значеннях магнітного поля, близьких Hc2, в однорідному надпровіднику другого роду змішаний стан характеризується правильною двохвимірною граткою Абрикосова. При збільшенні зовнішнього магнітного поля період гратки зменшується. При наближенні значення Н до Hc2 період досягає величини порядку x-0 ( вихрьові нитки доторкуються одна до одної ), відбувається фазовий перехід другого роду із змішаного стану в нормальний.

Якщо надпровідник ІІ роду знаходиться в змішаному стані і в напрямку, перпендикулярному вихрям, протікає транспортний струм, створений зовнішнім джерелом, то на вихрі діє сила Лоренца. Ця сила перпендикулярна струму і магнітному полю вихря. Під дією сили Лоренца магнітні вихрі переміщаються впоперек транспортному струмові (рис .1.5.3 ).



Рис. 1.5.3. Рух магнітної вихрьової лінії при наявності транспортного струму: F - сила Лоренца.

Рух магнітного поля вихря створює електричне поле, направлене вздовж вихря, яке викликає гальмування електронів. Виникає електричний опір, який називається резистивним.

В повністю однорідному зразку навіть при досить малій силі Лоренца переміщення вихрів пов’язано з втратою енергіїі зникненням надпровідності. Таким чином, для абсолютно чистого зразка критичний струм, який руйнує надпровідність, рівний нулю.

В неоднорідних надпровідниках ІІ роду завжди є дефекти різного роду ( границі зерен, пори, дислокації та ін. ). На цих неоднорідностях вихрі закріплюються. Явище закріплення визрів називають пінінгом. Надпровідники з сильним пінінгом називаються жорсткими.

При наявності пінінга необхідний кінечний транспортний струм для зриву і руху вихрів. Густина струму, при котрій починається зрив вихрів від центра пінінга, називається критичною густиною струму.

Різні ненадпровідні включення з розмірами порядку кореляційної довжини x0 є ефективними центрами пінінга. Вони характеризуються «силою пінінга»,рівній силі Лоренца, при котрій починається відрив магнітного вихря. Спеціальною механічною і термообробкою, а також включеннями ненадпровідних домішок створюються жорсткі надпровідникиз багаточисленними центрами пінінга.

Якщо критичні поля чистих металів не перевищували 0,2 Тл, то створені на початку 60-х років жорсткі надпровідники, утворені із сплавів Nb-Ti, Nb-Zr, Nb-Sn та інші., дозволили виготовляти невеликі соленоїди з критичними полями до 10 Тл при високих густинах транспортного критичного струму - порядку 105-106 А/см2. Ці високі значення полів і струмів були отримані при спеціалній термомеханічній обробці, яка забеспечує створення великого числа центрів пінінга.

1.6. Поведінка тонких плівок ВТНП у магнітному полі. Модель Коффі - Клема.

Перейдемо до розгляду поведiнки надпровiдника ІІ-го роду, який знаходиться у змiшаному станi на НВЧ. На iзольований флюксоїд, пронизуючий ВТНП, будуть дiяти такi сили: якщо по флюксоїду тече транспортний струм густиною j=j0e-iwt, то на одиницю довжини флюксоїда з боку магнiтних складових НВЧ - поля, перпендикулярних струму, буде дiяти сила Лоренца :

, (1.6.1)

де

— повний магнiтний потiк, який пронизує флюкоїд,

аf — радiус флюксоїда.

Сила пiнiнгу:

, (1.6.2)

де

— стала пiнiнгу на одиницю довжини флюксоїда,

хf — вiдхилення флюксоїда вiд положення рiвноваги.

Сила пiнiнгу обумовлена тим, що вихорi можуть бути закрiпленi (запiнiнгованi) на iснуючих в ВТНП дефектах: границi зерен, дислокації, пори i т.п., до того, поки сила Лоренца не перевищить силу пiнiнгу, в результатi чого стане можливим коливальний рух вихорiв навколо центрiв закрiплення.

В процесi руху вихорiв на них буде дiяти сила в'язкостi:

, (1.6.3)