Вопрос №1
Что вы знаете об эталонах и мерах электрических величин?
Средства измерения, обеспечивающие воспроизведение и хранение единицы с целью передачи ее размера другим средствам измерения и выполненное по особой спецификации, называется эталоном.
В зависимости от назначения эталоны делятся на государственные, первичные, вторичные, эталоны копии, эталоны сравнения и рабочие эталоны. Рабочие эталоны – это эталоны, предназначенные для передачи размера единицы образцовым средствам измерения или наиболее точным средствам измерения.
Существуют следующие меры электрических величин:
1. Мера тока – токовые весы (Рис.1). Имеют коромысло, на одном плече которого подвешена подвижная катушка. Последовательно с ней соединена неподвижная катушка. При прохождении тока по катушкам возникает сила их электрического взаимодействия, которая уравновешивается эталонными гирями, нагруженными на второе плечо коромысла.
Рис. 1
Рис. 2
Мера э.д.с. – нормальный элемент (НЭ) (Рис. 2). Нормальный элемент состоит из запаянного стеклянного Н-образногно сосуда. Положительным электродом служит ртуть (1), заполняющая нижнюю часть одной ветви сосуда. Над положительным электродом расположена паста – деполяризатор (2) кристаллов сернокислого кадмия и серной закиси ртути. Над пастой и отрицательным электродом (3) которым служит амальгальма кадмия, расположены кристаллы сернокислого кадмия (5). Электролитом служит водный раствор сернокислого кадмия (4).
Рис. 3
Меры электрического сопротивления (Рис.3). Меры электрического сопротивления – образцовые резисторы или образцовые катушки сопротивления. Точность измерительных резисторов определяется по ГОСТ 6864-69, который делит их на классы: 0,0005; 0,001; 0,002; 0,005; 0,01; 0,02; 0,05. Измерительные резисторы изготавливаются из манганиновой проволоки или ленты. Образцовые резисторы изготавливаются на номинальные сопротивления: 0,00001; 0,0001; 0,001; 0,01; 0,1; 1; 10; 100; 1000; 10000; 100000 Ом. На рис. 3 показано устройство одной из катушек сопротивления. На латунный или фарфоровый цилиндр А наложена бифилярная (выполненная в два провода) обмотка, на концах которой расположены две пары зажимов I и U, укрепленные на эбонитовой панели Б, к которой крепиться кожух катушки В
2. Меры индуктивности и взаимной индуктивности
Меры индуктивности с постоянным значением – это катушки с постоянным значением индуктивности (рис.4).
Рис.4
Образцовые катушки индуктивности представляют собой пластмассовый или фарфоровый каркас с наложенной на него обмоткой из медной изолированной проволоки, концы которой укрепляются на зажимах. Использование каркаса из немагнитного материала обеспечивает независимость индуктивности от тока в катушке.
Образцовые катушки изготавливаются на следующие номинальные значения индуктивности: 0,0001; 0,001; 0,01; 0,1; 1 Гн.
Меры емкости
Рис. 5
Меры емкости – это образцовые конденсаторы с известной постоянной или переменной емкостью (Рис.5). Емкость конденсатора должна возможно меньше изменяться в зависимости от времени, температуры, частоты и других факторов, Конденсатор должен обладать малыми диэлектрическими потерями и большим сопротивлением изоляции. В качестве образцовых используются воздушные и слюдяные конденсаторы.
Вопрос №2
Каково назначение, устройство, режим работы и применение измерительного трансформатора тока и его векторная диаграмма?
Измерительные трансформаторы тока предназначены для преобразования измеряемых переменных токов в относительно малые токи, не превышающие обычно 5 А. Во вторичную цепь трансформатора тока включают амперметры, последовательные обмотки ваттметров, счетчиков и других приборов.
Измерительные трансформаторы тока состоят из стального магнитопровода и двух изолированных обмоток. Первичная обмотка, имеющая меньшее число витков, включается в рассечку провода с измеряемым током. Вторичная обмотка с большим числом витков замыкается на амперметр и токовые обмотки измерительных приборов, соединенные последовательно, так что сопротивление вторичной цепи мало и не превышает обычно 1 – 2 Ом.
Первичный ток трансформатора не зависит от сопротивления его вторичной цепи. При работе этот ток может изменяться от нуля до номинального, а при коротких замыканиях в цепи может превосходить номинальный в десятки раз.
По векторной диаграмме (Рис.1) запишем уравнение намагничивающих сил
- результирующая намагничивающая сила возбуждающая магнитный поток в магнитопроводе трансформатора. Под током холостого хода I0 следует понимать ток первичной обмотки, который при разомкнутой вторичной обмотке создает в магнитопроводе номинальный для данного режима магнитный поток.При нормальном режиме работы трансформатора тока н.с. I0w1 и магнитный поток в магнитопроводе не значительны, так как этот поток должен наводить на вторичной обмотке незначительную э.д.с., необходимую для покрытия малых активных и реактивных потерь вторичной цепи трансформатора.
Отношение действительного значения первичного тока I1 к действительному значению вторичного тока I2 называется действительным коэффициентом трансформации трансформатора тока «k»
Рис. 1 Векторная диаграмма трансформатора тока:
Вопрос № 3
Как измерить сопротивление изоляции установки, находящейся под рабочим напряжением?
Для измерения сопротивления изоляции установки. Находящейся под рабочим напряжением U, измеряют вольтметром напряжение U, напряжение UA между проводом А и землей (положение переключателя А) и обозначив rv сопротивление вольтметра, можно написать выражение тока, идущего через rB – сопротивление изоляции провода В:
Включив вольтметр между проводом В и землей (положение переключателя B) и обозначив rv – сопротивление вольтметра, можно написать выражение тока, идущего через rA – сопротивление изоляции провода А: