Смекни!
smekni.com

Контрольная работа по Физике (стр. 2 из 5)

Среди большого разнообразия видов транзисторов наи­большее распространение получили биполярные и полевые транзисторы, которые различаются способом управления то­ком, протекающим через транзистор.

Принцип работы биполярного транзистора.

Биполярные транзисторы представляют собой тонкую пластинку слаболегированного германия или кремния с элек­тронной или дырочной проводимостью, на которой методом вплавления или диффузии получены два электронно-дырочных перехода.

Биполярные транзисторы (или просто транзисторы) имеют три вывода: коллектор К, базу Б и эмиттер Э (рис 3). В за­висимости от комбинации р-п перехода транзисторы делятся на два типа: р-п-р и п-р-п.

Рис. 3. Схема транзисторов типа р-п-р с прямой (а) и п-р-п с обрат­ной (б) проводимостями и их условные обозначения для р-п-р («) и для п-р-п (г): Э - эмиттер; Б - база; К - коллектор; рпt - открытый р-п пе­реход; рп2 - закрытый р-п переход.

При соединении полупроводников с различным типом проводимости на границе раздела образуется область, обед­нённая носителями тока {запирающий слой). Наличие трёх полупроводников в плоском триоде приводит к образованию двух запирающих слоев по обе стороны среднего полупро­водника (рт и pni). Таким образом, полупроводниковый триод в отличие от диодов содержит два электронно-дырочных перехода.

Устройство германиевого биполярного транзистора типа р-п-р показано на рис. 3,а. В кристалл германия с элек­тронной проводимостью с двух сторон вплавлены кусочки индия, образующие области кристалла с дырочной проводи­мостью. Кристалл с электронной проводимостью имеет неинжектирующий вывод и называется базой транзистора. Об­ласть кристалла с дырочной проводимостью с п-р переходом малой площади называется эмиттером, а переход соответ­ственно называется эмиттерным п-р переходом. Область кристалла с дырочной проводимостью и п-р переходом большой площади называется коллектором, а переход назы­вается коллекторным. Условное обозначение транзистора типа р-п-р в электронных схемах показано на рис. 3, в.

Биполярный транзистор типа п-р-п (рис. 3,а) отличает­ся от транзистора типа р-п-р тем, что основной кристалл, об­разующий базу транзистора, имеет дырочную проводимость, а благодаря вплавлению или диффузии создаются у поверх­ности области кристалла, имеющие электронную проводи­мость. Условное обозначение транзистора типа п-р-п показа­но на рис. 3, г.

Обе разновидности транзистора отличаются только типом основных носителей заряда и полярностью внешних напря­жений. Принцип действия у них один и тот же. Поясним его на примере транзистора типа р-п-р, включение которого в цепь источников питания показано на рис. 4.

Рис. 4. Принцип действия транзистора типа р-п-р.

Для того чтобы полупроводниковый триод усиливал вход­ной сигнал, его надо соединить с двумя внешними источни­ками тока так, чтобы один электронно-дырочный переход был включен в пря­мом направлении, а второй - в обратном (рис. 4.).

Переход, вклю­чаемый в прямом на­правлении, называют эмиттерным, а переход, включаемый в обратном направлении - коллекторным.

Источник ЭДС Еквыходной цепи транзистора включен между коллектором и базой в непроводящем направлении, поэтому коллекторный п-р переход закрыт и через него про­ходит только небольшой тепловой ток IКБО, обусловленный дрейфом через коллекторный переход неосновных носителей зарядов: электронов (-) из коллектора в базу и дырок (+) из базы в коллектор.

Если во входную цепь транзистора включить в прямом направлении источник Еэ, то эмиттерный п-р переход откро­ется и через него в обоих направлениях пойдут основные но­сители зарядов: электроны из базы в эмиттер и дырки из эмиттера в базу через открытый рп1переход.

Поскольку дырки в базе являются неосновными носите­лями зарядов, а ширина базы меньше диффузионной длины, на которую успевают продвинуться дырки до рекомбинации (нейтрализации) с электронами, то подавляющее большинст­во дырок, инжектированных из эмиттера в базу, создадут диффузионный ток в направлении к коллекторному п-р пере­ходу и там, попадая в электрическое поле закрытого коллек­торного перехода, создадут дрейфовый ток, вызывая резкое увеличение коллекторного тока. В силу закона электриче­ской нейтральности заряды дырок, прошедших из эмиттера через базу в коллектор, будут компенсированы свободными электронами, приходящими в коллектор из внешней цепи и создающими в ней ток коллектора IК.

Электроны, являющиеся основными носителями зарядов в базовой области транзистора, под действием электрического поля источника ЭДС Еэпройдут через эмиттерный п-р пере­ход и создадут ток базы транзистора

Одной из характеристик транзистора является коэффици­ент передачи по току а = (при U=const).Как правило, а = 0,92-0,99.

Если не учитывать очень малый по величине тепловой ток коллектора Iкбо, то можно в соответствии с первым законом Кирхгофа написать:

откуда

или

4. Схема включения транзистора с общей базой.

Схема с общей базой «ОБ» (рис. 5) названа так потому, что базовый электрод транзистора VT является общим для входной и выходной цепей транзистора. В схеме с общей ба­зой входной ток равен току эмиттера IЭ, который обычно на один-два порядка больше тока базы IS, поэтому входное со­противление транзистора мало. Усиление по току отсутству­ет, так как IК<IЭ.

Рис. 5. Схема включения транзистора с общей базой; (RH - сопротивление нагрузки, Rx - со­противление между эмиттером и базой)

Коэффициент усиления по току:

Усиления по току не происходит, так как Кi< 1.

Коэффициент усиления по напряжению:

Определим Rвх:

Усиление по напряжению происходит, так как Ku >1.

Коэффициент усиления по мощности:

Усиление по мощности происходит, так как КP>1.

Схема с общей базой применяется в некоторых усилите­лях сигналов с трансформаторной связью между каскадами. Недостатком схемы является трудность согласования боль­шого выходного сопротивления предыдущего каскада с ма­лым входным сопротивлением последующего каскада.

5. Схема включения транзистора с общим эмиттером.

Схема с общим эмиттером «ОЭ» (рис. 6) является наиболее распространенной схемой включения транзистора. Во входной цепи протекает сравнительно маленький ток базы iБ, поэтому входное сопротивление транзисторов VT в схеме с ОЭ достаточно велико.

Рис. 6. Схема включения транзистора с общей эмиттером; (RH - сопротивление нагрузки, Rx - со­противление между эмиттером и базой)

Выходное сопротивление меньше, чем в схеме с общей базой, что позволяет осуществить согласование между кас­кадами усилителя без применения согласующих трансформаторов.

Коэффициент усиления по току:

Ток в схеме с общим эмиттером усиливается, так как Ki>1.

Коэффициент усиления по напряжению:

Определим Rвх:

так как

так как RH >>RЭБ, то напряжение в схеме с общим эмитте­ром усиливается, Ки>1.

Коэффициент усиления по мощности:

Мощность также усиливается, так как КP>1.

Схема с «ОЭ» широко применяется в усилительных кас­кадах, так как усиливаются ток, напряжение и мощность.

Схема с общим эмиттером «ОЭ», называемая также "уси­лителем напряжения" или "инвертором", изображена на рис. 7.

Рис. 7. Схема с общим эмиттером (инвертор)