РЕФЕРАТ
на тему:”ЕЛЕКТРОСТАТИКА”
План
1. Електричний заряд. Закон збереження електричного заряду. Закон Кулона.
2. Електричне поле і його напруженість. Принцип суперпозиції полів. Поле точкового заряду.
3. Теорема Гаусса та її використання.
1 Електричний заряд. Закон збереження електричного заряду. Закон Кулона
Електричний заряд – це невіддільна властивість деяких елементарних частинок.
До елементарних частинок відносяться такі мікрочастинки, для яких сучасними засобами фізики не можна доказати, що вони є об’єднаннями інших мікрочастинок.
Відомо, що заряди бувають двох видів – позитивні й негативні. Носієм елементарного негативного заряду є електрон. Елементарним позитивним зарядом наділений протон.
За абсолютною величиною елементарні заряди електрона й протона однакові. За одиницю електричного заряду прийнято кулон (Кл).
Один кулон – це електричний заряд, який проходить через поперечний переріз провідника при силі струму в один ампер за час в одну секунду
1Кл = 1 А/с.
Елементарний електричний заряд електрона або протона дорівнює
| e | = 1,6 ּ 10-19 Кл.
Будь-який інший заряд є сукупністю елементарних зарядів
q = Nּe . (6.1.1)
Електричні заряди можуть мати лише дискретні значення, кратні заряду електрона. Таку властивість зарядів називають квантуванням.
В довільних інерціальних системах заряд є інваріантним або незмінним.
Електричні заряди можуть зникати або виникати знову. Пояснити цей факт можна однаковим або різним числом зарядів різних знаків у системі, або їх взаємним перетворенням. Так відомо, що електрон і позитрон можуть анігілювати
е + +е 2 . (6.1.2)
В той же час гамма-кванти високих енергій (Е 1,02Ме) - в полі ядерних сил, або кулонівському полі елементарних заряджених частинок здатні перетворюватись в електрон і позитрон:
Сумарний заряд електрично-ізольованої системи є величиною сталою. Це твердження є законом збереження електричного заряду.
Всі основні властивості електричних зарядів знайдені дослідним шляхом. Серед них відмітимо такі:
- однойменні заряди відштовхуються, різнойменні притягуються;
- величина заряду не залежить від системи відліку;
- дискретний характер заряду, тобто кратність до елементарного заряду;
- електричний заряд має властивість адитивності. Це означає, що заряд системи тіл дорівнює сумі зарядів всіх частинок , які входять в систему.
В електростатиці використовується фізична модель точкового джерела.
Точковим джерелом заряду називається заряджене тіло, форма й розміри якого в даних умовах не є суттєвими.
Дослідним способом було доказано, що сила взаємодії двох нерухомих точкових зарядів пропорційна величині кожного із зарядів і обернено пропорційна квадрату відстані між ними.
Закон взаємодії точкових зарядів називається законом Кулона
де q1 і q2 - точкові електричні заряди;
Сила
…
Згідно з третім законом Ньютона сили з якими взаємодіють два точкових заряди, рівні за величиною і протилежні за напрямком
Діелектрична стала ε0 відноситься до числа фундаментальних фізичних сталих. Її величина дорівнює 8,85ּ10-12 Ф/м.
Якщо взаємодія двох точкових зарядів відбувається у ізотропному діелектричному середовищі, то закон Кулона матиме вигляд
Відносна діелектрична проникність ε показує у скільки разів сила взаємодії між електричними зарядами в даному ізотропному діелектричному середовищі буде меншою сили взаємодії між цими зарядами у вакуумі
де F0– сила взаємодії між двома точковими зарядами у вакуумі; F – сила взаємодії між цими зарядами в однорідному діелектричному середовищі.
Відносна діелектрична проникність вакууму
2. Електричне поле і його напруженість. Принцип суперпозиції полів. Поле точкового заряду
Будь-яке заряджене тіло можна розглядати як сукупність точкових зарядів подібно до того, як в механіці будь-яке тіло можна вважати сукупністю матеріальних точок.
Тому електростатична сила, з якою одне заряджене тіло діє на інше заряджене тіло, дорівнює геометричній сумі сил, прикладених до всіх точкових зарядів, наприклад другого тіла з сторони всіх точкових зарядів першого тіла.
Часто буває більш доцільно вважати, що заряди розподілені в зарядженому тілі неперервно, а тому слід користуватись поняттями лінійної, поверхневої й об’ємної густини зарядів.
Лінійна густина зарядів у випадку зарядженого стрижня, визначається за допомогою формули
=
де
Поверхнева густина зарядів у випадку рівномірно зарядженої поверхні визначається за формулою
=
де σ – поверхнева густина зарядів, яка вимірюється в Кл/м2.
Об’ємна густина зарядів, у випадку рівномірно зарядженого тіла по об’єму, визначається за формулою
=
де ρ – об’ємна густина зарядів, яка вимірюється в Кл/м3.
Взаємодія між двома зарядами, які перебувають у стані спокою, здійснюється за рахунок взаємодії електричних полів цих зарядів. Будь-який заряд змінює властивості оточуючого простору, створюючи в ньому електричне поле.
Поле електричного заряду можна виявити за допомогою іншого заряду з своїм електричним полем.
Електричне поле – це один із видів існування матерії в оточуючому просторі.
Електричне поле будь-якого статичного заряду можна характеризувати векторною величиною – напруженістю електричного поля, і скалярною величиною – потенціалом.
Напруженість електричного поля визначається силою, з якою діє деякий заряд у даній точці його поля на електричне поле точкового заряду, поміщеного в цю точку. Точковий заряд завжди є позитивним. Розміри точкового заряду мають бути такими, щоб він своїм власним електричним полем не спотворював поля основного заряду.
Рис 6.1
Нехай у деякому просторі заряд Qстворює статичне електричне поле. Для виявлення цього поля в точку А розміщують точковий заряд qо (рис 6.1).
На заряд qо зі сторони основного зарядуQ діє кулонівська сила
Величину цього відношення називають напруженістю електричного поля і позначають буквою
Одиницею напруженості електричного поля статичного заряду є Н/Кл або В/м.
Напрям вектора напруженості електричного поля збігається з напрямком вектора сили.
Важливо знати:
- якщо поле створене позитивним зарядом, то напрям вектора
- якщо поле створене негативним зарядом, то напрям вектора
Рис. 6.2
До кулонівських сил застосовується принцип незалежності дії сил – принцип суперпозиції.
Суть принципу суперпозиції полягає в тому, що напруженість результуючого поля, створеного системою електричних зарядів, теж дорівнює геометричній сумі напруженостей полів кожного із зарядів окремо, тобто