Смекни!
smekni.com

Разработка системы электроснабжения механического цеха (стр. 14 из 18)

.

Далее по /10, приложение 6/ по значениям

и
определяются диаметры труб, а также скорость теплоносителя ω и фактическое значение
по участкам циркуляционного кольца. Полученные данные заносятся в таблицу 4.4.

По /10, приложение 4/ подсчитываются суммы коэффициентов местных сопротивлений на каждом расчётном участке. Все результаты заносятся в таблицу 4.4.


Таблица 4.4 – Расчёт трубопроводов системы водяного отопления

№участка Q,Вт G,кг/ч l,м Диаметртрубы,мм ω,м/с
,Па/м
ΔРл,Па Σζ ΔРм,Па ΔРл+ΔРм,Па
Главное циркуляционное кольцо, проходящее через прибор 16
1 21600 740 39,3 25 0,38 85 3340,5 4,5 319,5 3660
2 18900 650 4 25 0,32 65 260 1 50,3 310,3
3 16200 555 5,6 25 0,28 60 336 5 193 529
4 13500 465 4 25 0,23 35 140 1 26,1 166,1
5 10800 370 5,6 20 0,3 80 448 7 309,4 757,4
6 8100 280 4 20 0,23 45 180 1 26,1 206,1
7 5400 185 5,6 15 0,28 95 532 7 270,2 802,2
8 2700 95 4,1 15 0,15 28 114,8 2,5 27,8 142,6
9 1350 45 0,2 15 0,06 4 0,8 6,5 11,5 12,3
10 1350 45 0,2 15 0,06 4 0,8 1 1,8 2,6
11 2700 95 4,1 15 0,15 28 114,8 4,5 50 164,8
12 5400 185 5,6 15 0,28 95 532 7 270,2 802,2
13 8100 280 4 20 0,23 45 180 1 26,1 206,1
14 10800 370 5,6 20 0,3 80 448 7 309,4 757,4
15 13500 465 4 25 0,23 35 140 1 26,1 166,1
16 16200 555 5,6 25 0,28 60 336 5 193 529
17 18900 650 4 25 0,32 65 260 1 50,3 310,3
18 21600 740 39,9 25 0,38 85 3391,5 5,5 390,5 3782
Σ(ΔРл+ΔРм)1÷18 = 13306,5
Малое циркуляционное кольцо, проходящее через прибор 1
19 2700 95 0,1 15 0,15 28 2,8 1,5 16,7 19,5
20 1350 45 0,2 15 0,06 4 0,8 6,5 11,5 12,3
21 1350 45 0,2 15 0,06 4 0,8 1 1,8 2,6
22 2700 95 0,1 15 0,15 28 2,8 3 33,3 36,1
Σ(ΔРл+ΔРм)19÷22 = 70,5

Расчёт сумм коэффициентов местных сопротивлений приводится ниже.

Принимается, что проточный воздухосборник установлен в тепловом пункте и поэтому в расчётах не участвует.

Участок 1 (d = 25 мм): задвижка – ζ = 0,5; четыре поворота 900 – ζ = 4·1=4; Σζ = 4,5.

Участок 2 (d = 25 мм): тройник на проход – ζ = 1; Σζ = 1.

Участок 3 (d = 25 мм): тройник на проход – ζ = 1; четыре поворота 900 – ζ = 4·1=4; Σζ = 5.

Участок 4 (d = 25 мм): тройник на проход – ζ = 1; Σζ = 1.

Участок 5 (d = 20 мм): тройник на проход – ζ = 1; четыре поворота 900 – ζ = 4·1,5=6; Σζ = 7.

Участок 6 (d = 20 мм): тройник на проход – ζ = 1; Σζ = 1.

Участок 7 (d = 15 мм): тройник на проход – ζ = 1; четыре поворота 900 – ζ = 4·1,5=6; Σζ = 7.

Участок 8 (d = 15 мм): тройник на проход – ζ = 1; поворот 900 – ζ = 1,5; Σζ = 2,5.

Участок 9 (d = 15 мм): тройник на ответвление – ζ = 1,5; кран двойной регулировки – ζ = 4; половина радиатора – ζ = 1; Σζ = 6,5.

Участок 10 (d = 15 мм): половина радиатора – ζ = 1; Σζ = 1.

Участок 11 (d = 15 мм): тройник на противоток – ζ = 3; поворот 900 – ζ = 1,5; Σζ = 4,5.

Участок 12 (d = 15 мм): тройник на проход – ζ = 1; четыре поворота 900 – ζ = 4·1,5=6; Σζ = 7.

Участок 13 (d = 20 мм): тройник на проход – ζ = 1; Σζ = 1.

Участок 14 (d = 20 мм): тройник на проход – ζ = 1; четыре поворота 900 – ζ = 4·1,5=6; Σζ = 7.

Участок 15 (d = 25 мм): тройник на проход – ζ = 1; Σζ = 1.

Участок 16 (d = 25 мм): тройник на проход – ζ = 1; четыре поворота 900 – ζ = 4·1=4; Σζ = 5.

Участок 17 (d = 25 мм): тройник на проход – ζ = 1; Σζ = 1.

Участок 18 (d = 25 мм): тройник на проход – ζ = 1; четыре поворота 900 – ζ = 4·1=4; задвижка – ζ = 0,5; Σζ = 5,5.

Участок 19 (d = 15 мм): тройник на ответвление – ζ = 1,5; Σζ = 1,5.

Участок 20 (d = 15 мм): тройник на ответвление – ζ = 1,5; кран двойной регулировки – ζ = 4; половина радиатора – ζ = 1; Σζ = 6,5.

Участок 21 (d = 15 мм): половина радиатора – ζ = 1; Σζ = 1.

Участок 22 (d = 15 мм): тройник на противоток – ζ = 3; Σζ = 3.

В качестве примера приводится расчёт первого участка главного циркуляционного кольца, проходящего через прибор 16.

Линейное падение давления, Па,

,

где Rл – удельное падение давления, Па/м;

l – длина участка трубопровода, м;

.

Далее по /10, приложение 5/ по значению скорости потока ω определяется значение динамического давления на участке Рд, Па,

Рд = 71.

Потери давления в местных сопротивлениях, Па,

ΔРм = Σζ · Рд,

ΔРм = 4,5 · 71=319,5.

Общие потери давления на участке 1, Па,

ΔР1 = ΔРл + ΔРм,

ΔР1 = 3340,5 + 319,5 = 3660.

Запас давления в кольце на неучтённые местные сопротивления и возможные неточности в монтаже системы отопления, %,

,

.

Так как запас давления не превышает 10%, то диаметры трубопроводов считаются подобранными правильно.

Расчёт потерь давления в малом циркуляционном кольце, проходящем через прибор 1, производится аналогично. Исходные данные и результаты расчёта приводятся в таблице 4.4.

Общие потери давления в малом циркуляционном кольце, Па,

,

,

что значительно меньше располагаемого циркуляционного давления в системе.

Так как диаметры трубопроводов участков 19, 20, 21, 22 уменьшить нельзя (они минимальны), поэтому избыток располагаемого давления следует погасить краном двойной регулировки, установленным на подводе к нагревательному прибору 1.

Подводы к остальным приборам системы отопления также принимаются диаметром 15 мм.

Расчётная схема для системы отопления, проходящей через бытовые помещения, приводится на рисунке 4.5.

Общая длина трубопровода рассчитываемого кольца Σl = 161,4 м.

Располагаемое циркуляционное давление в системе, Па,

,

.

Средняя потеря давления на трение, Па/м,

,

.

Все остальные расчёты сводятся в таблицу 4.5.

Таблица 4.5 – Расчёт трубопроводов системы водяного отопления

№участка Q,Вт G,кг/ч l,м Диаметртрубы,мм ω,м/с
,Па/м
ΔРл,Па Σζ ΔРм,Па ΔРл+ΔРм,Па
1 2 3 4 5 6 7 8 9 10 11
Главное циркуляционное кольцо, проходящее через прибор 36
1 77600 2665 3 50 0,33 30 90 0,4 21,4 111,4
2 73630 2530 4 40 0,52 95 380 1 133,2 513,2
3 69660 2395 4 40 0,5 90 360 1 122,8 482,8
4 65720 2260 4 40 0,48 80 320 1 113,5 433,5
5 61780 2125 4 40 0,46 75 300 1 104,2 404,2
6 57840 1990 4 40 0,44 70 280 1 95,3 375,3
7 53900 1850 4 40 0,4 60 240 1 78,7 318,7
8 49960 1715 4 40 0,35 45 180 1 60,3 240,3
9 46020 1580 4 32 0,44 80 320 1 95,3 415,3
10 42080 1445 4 32 0,4 70 280 1 78,7 358,7
11 38140 1310 4 32 0,37 60 240 1 67,4 307,4
12 34200 1175 4 32 0,32 45 180 1 50,3 230,3
13 29360 1010 4 32 0,29 38 152 1 41,4 193,4
14 24520 845 12,8 32 0,25 28 358,4 5 153,8 512,2
15 19880 685 4 25 0,35 75 300 1 60,3 360,3
16 15240 525 4 25 0,27 45 180 1 35,9 215,9
17 10600 365 4 20 0,29 75 300 1 41,4 341,4
18 5300 180 4,1 15 0,27 95 389,5 2,5 89,8 479,3
19 2650 90 0,2 15 0,14 25 5 6,5 62,4 67,4
20 2650 90 0,2 15 0,14 25 5 1 9,6 14,6
21 5300 180 4,1 15 0,27 95 389,5 4,5 161,6 551,1
22 10600 365 4 20 0,29 75 300 1 41,4 341,4
Продолжение таблицы 4.5
1 2 3 4 5 6 7 8 9 10 11
23 15240 525 4 25 0,27 45 180 1 35,9 215,9
24 19880 685 4 25 0,35 75 300 1 60,3 360,3
25 24520 845 14 32 0,25 28 392 5 153,8 545,8
26 29360 1010 4 32 0,29 38 152 1 41,4 193,4
27 34200 1175 4 32 0,32 45 180 1 50,3 230,3
28 38140 1310 4 32 0,37 60 240 1 67,4 307,4
29 42080 1445 4 32 0,4 70 280 1 78,7 358,7
30 46020 1580 4 32 0,44 80 320 1 95,3 415,3
31 49960 1715 4 40 0,35 45 180 1 60,3 240,3
32 53900 1850 4 40 0,4 60 240 1 78,7 318,7
33 57840 1990 4 40 0,44 70 280 1 95,3 375,3
34 61780 2125 4 40 0,46 75 300 1 104,2 404,2
35 65720 2260 4 40 0,48 80 320 1 113,5 433,5
36 69660 2395 4 40 0,5 90 360 1 122,8 482,8
37 73630 2530 4 40 0,52 95 380 1 133,2 513,2
38 77600 2665 3 50 0,33 30 90 1,4 75 165
Σ(ΔРл+ΔРм)1÷38 = 12828,2
Пересчёт участков 1, 16, 23 и 38
1 77600 2665 3 40 0,55 110 330 0,5 74,4 404,4
16 15240 525 4 20 0,43 160 640 1 91,2 731,2
23 15240 525 4 20 0,43 160 640 1 91,2 731,2
38 77600 2665 3 40 0,55 110 330 1,5 223,1 553,1
Σ(ΔРл+ΔРм) = 2419,9
Малое циркуляционное кольцо, проходящее через прибор 1
39 3970 135 0,1 15 0,19 45 4,5 1,5 26,7 31,2
40 1985 70 0,2 15 0,11 17 3,4 6,5 39 42,4
41 1985 70 0,2 15 0,11 17 3,4 1 6 9,4
42 3970 135 0,1 15 0,19 45 4,5 3 53,4 57,9
Σ(ΔРл+ΔРм)39÷42 = 140,9

Запас давления в главном циркуляционном кольце, проходящем через прибор 36, %,