Рассмотрим два световых луча (рис. 233) — луч, соединяющий точки А и В (луч ЛОВ), и луч, проходящий через край линзы (луч АСВ), — воспользовавшись условием равенства времени прохождения света вдоль АО В и АСВ. Время прохождения света вдоль АОВ
где N = n/n1 — относительный показатель преломления (n и n1 — соответственно абсолютные показатели преломления линзы и окружающей среды). Время прохождения света вдоль АСВ равно
Так как t1 = t2, то
(166.1)
Рис. 233
Рассмотрим параксиальные (приосевые) лучи, т. е. лучи, образующие с оптической осью малые углы. Только при использовании параксиальных лучей получается стигматическое изображение, т. е. все лучи параксиального пучка, исходящего из точки А, пересекают оптическую ось в одной и той же точке В. Тогда h ≪ (a+e), h ≪ (b+d) и
Аналогично,
Подставив найденные выражения в (166.1), получим
(166.2)
Для тонкой линзы е ≪ а и d ≪ b, поэтому (166.2) можно представить в виде
Учитывая , чтоВыражение (166.3) представляет собой формулу тонкой линзы. Радиус кривизны выпуклой поверхности линзы считается положительным, вогнутой — отрицательным. Если α = ∞, т. е. лучи падают на линзу параллельным пучком (рис. 234, а), то
Рис. 234
Соответствующее этому случаю расстояние b = OF = f называется фокусным расстоянием линзы, определяемым по формуле
Оно зависит от относительного показателя преломления и радиусов кривизны.
Если b = ∞, т. е. изображение находится в бесконечности и, следовательно, лучи выходят из линзы параллельным пучком (рис. 234, 6), то a = OF = f. Таким образом, фокусные расстояния линзы, окруженной с обеих сторон одинаковой средой, равны. Точки F, лежащие по обе стороны линзы на расстоянии, равном фокусному, называются фокусами линзы. Фокус — это точка, в которой после преломления собираются все лучи, падающие на линзу параллельно главной оптической оси.
Величина
(166.4)
называется оптической силой линзы. Ее единица — диоптрия (дптр). Диоптрия — оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр= 1/м.
Линзы с положительной оптической силой являются собирающими, с отрицательной — рассеивающими. Плоскости, проходящие через фокусы линзы перпендикулярно ее главной оптической оси, называются фокальными плоскостями. В отличие от собирающей рассеивающая линза имеет мнимые фокусы. В мнимом фокусе сходятся (после преломления) воображаемые продолжения лучей, падающих на рассеивающую линзу параллельно главной оптической оси
(рис. 235).
Рис. 235
Учитывая (166.4), формулу линзы (166.3) можно записать в виде
Для рассеивающей линзы расстояния/и b надо считать отрицательными.
Построение изображения предмета в линзах осуществляется с помощью следующих лучей:
1) луча, проходящего через оптический центр линзы и не изменяющего своего направления;
2) луча, идущего параллельно главной оптической оси; после преломления в линзе этот луч (или его продолжение) проходит через второй фокус линзы;
3) луча (или его продолжения), проходящего через первый фокус линзы; после преломления в ней он выходит из линзы параллельно ее главной оптической оси.
Для примера приведены построения изображений в собирающей (рис. 236) и в рассеивающей (рис. 237) линзах: действительное (рис. 236, а) и мнимое (рис. 236, б) изображения — в собирающей линзе, мнимое — в рассеивающей.
Рис. 236
Рис. 237
Отношение линейных размеров изображения и предмета называется линейным увеличением линзы. Отрицательным значениям линейного увеличения соответствует действительное изображение (оно перевернутое), положительным — мнимое изображение (оно прямое). Комбинации собирающих и рассеивающих линз применяются в оптических приборах, используемых для решения различных научных и технических задач.
§ 167. АБЕРРАЦИИ (ПОГРЕШНОСТИ) ОПТИЧЕСКИХ
СИСТЕМ
Рассматривая прохождение света через тонкие линзы, мы ограничивались параксиальными лучами (см. § 166). Показатель преломления материала линзы считали не зависящим от длины волны падающего света, а падающий свет — монохроматическим. Так как в реальных оптических системах эти условия не выполняются, то в них возникают искажения изображения, называемые аберрациями (или погрешностями).
1. Сферическая аберрация. Если расходящийся пучок света падает на линзу, то араксиальные лучи после преломления пересекаются в точке S' (на расстоянии OS' от оптического центра линзы), а лучи, более удаленные от оптической оси, — в точке S", ближе к линзе (рис. 238). В результате изображение светящейся точки на экране, перпендикулярном оптической оси, будет в виде расплывчатого пятна. Этот вид погрешности, связанный со сферичностью преломляющих поверхностей, называется сферической аберрацией. Количественной мерой сферической аберрации является отрезок δ = OS" - OS'. Применяя диафрагмы (ограничиваясь параксиальными лучами), можно сферическую аберрацию уменьшить, однако при этом уменьшается светосила линзы. Сферическую аберрацию можно практически устранить, составляя системы из собирающих (δ < 0) и рассеивающих (δ > 0) линз. Сферическая аберрация является частным случаем астигматизма.
Рис. 238
2. Кома. Если через оптическую систему проходит широкий пучок от светящейся точки, расположенной не на оптической оси, то получаемое изображение этой точки будет в виде освещенного пятнышка, напоминающего кометный хвост. Такая погрешность называется поэтому комой. Устранение комы производится теми же приемами, что и сферической аберрации.
3. Днсторсня. Погрешность, при которой при больших углах падения лучей на линзу линейное увеличение для точек предмета, находящихся на разных расстояниях от главной оптической оси, несколько различается, называется дисторсией. В результате нарушается геометрическое подобие между предметом (прямоугольная сетка, рис. 239, а) и его изображением (рис. 239, б — подушкообразная дисторсия, рис. 239, в — бочкообразная дисторсия). Дисторсия особенно опасна в тех случаях, когда оптические системы применяются для съемок, например при аэрофотосъемке, в микроскопии и т. д. Дисторсию исправляют соответствующим подбором составляющих частей оптической системы.
Рис. 239
4. Хроматическая аберрация. До сих пор мы предполагали, что коэффициенты преломления оптической системы постоянны. Однако это утверждение справедливо лишь для освещения оптической системы монохроматическим светом (λ = const); при сложном составе света необходимо учитывать зависимость коэффициента преломления вещества линзы (и окружающей среды, если это не воздух) от длины волны (явление дисперсии). При падении на оптическую систему белого света отдельные составляющие его монохроматические лучи фокусируются в разных точках (наибольшее фокусное расстояние имеют красные лучи, наименьшее — фиолетовые), поэтому изображение размыто и по краям окрашено. Это явление называется хроматической аберрацией. Так как разные сорта стекол обладают различной дисперсией, то, комбинируя собирающие и рассеивающие линзы из различных стекол, можно совместить фокусы двух (ахроматы) и трех (апохроматы) различных цветов, устранив тем самым хроматическую аберрацию. Системы, исправленные на сферическую и хроматическую аберрации, называются апланатами.
5. Астигматизм. Погрешность, обусловленная неодинаковостью кривизны оптической поверхности в разных плоскостях сечения падающего на нее светового пучка, называется астигматизмом. Так, изображение точки, удаленной от главной оптической оси, наблюдается на экране в виде расплывчатого пятна эллиптической формы. Это пятно в зависимости от расстояния экрана до оптического центра линзы вырождается либо в вертикальную, либо в горизонтальную прямую. Астигматизм исправляется подбором радиусов кривизны преломляющих поверхностей и их фокусных расстояний. Системы, исправленные на сферическую и хроматическую аберрации и астигматизм, называются анастигматами.