Смекни!
smekni.com

Курс физики (стр. 80 из 157)

18.8. Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями x = cosπt и y = cosπt/2. Определить уравнение траектории точки и вычертить ее с нанесением масштаба. [2y2 – x = 1]

18.9. За время, за которое система совершает 100 полных колебаний, амплитуда уменьшается в три раза. Определить добротность системы. [286]

18.10. Колебательный контур содержит катушку индуктивностью 25 мГн, конденсатор емкостью 10 мкФ и резистор сопротивлением 1 Ом. Заряд на обкладках конденсатора Qm = 1 мКл. Определить: 1) период колебаний контура; 2) логарифмический декремент затухания колебаний; 3) уравнение зависимости изменения напряжения на обкладках конденсатора от времени. [1) 3,14 мс; 2)

0,06; 3) U = 100е-20tcos 636πt]

18.11. Последовательно соединенные резистор с сопротивлением 110 Ом и конденсатор подключены к внешнему переменному напряжению с амплитудным значением 110 В. Оказалось, что амплитудное значение установившегося тока в цепи 0,5 А. Определить разность фаз между током и внешним напряжением. [60°]

18.12. В цепь переменного тока частотой 50 Гц включена катушка длиной 50 см и площадью поперечного сечения 10 см2, содержащая 3000 витков. Определить активное сопротивление катушки, если сдвиг фаз между напряжением и током составляет 60°. [4,1 Ом]

18.13. Генератор, частота которого составляет 32 кГц и амплитудное значение напряжения равно 120 В, включен в резонирующую цепь, емкость которой 1 нФ. Определить амплитудное значение напряжения на конденсаторе, если активное сопротивление цепи 5 Ом. [119 кВ]

18.14. Колебательный контур содержит катушку индуктивностью 5 мГц и конденсатор емкостью 2 мкФ. Для поддержания в колебательном контуре незатухающих гармонических колебаний с амплитудным значением напряжения на конденсаторе 1 В необходимо подводить среднюю мощность 0,1 мВт. Считая затухание колебаний в контуре достаточно малым, определить добротность данного контура. [100]

ГЛАВА 19 УПРУГИЕ ВОЛНЫ

§ 153. ВОЛНОВЫЕ ПРОЦЕССЫ. ПРОДОЛЬНЫЕ И ПОПЕРЕЧНЫЕ ВОЛНЫ

Колебания, возбужденные в какой-либо точке среды (твердой, жидкой или газообразной), распространяются в ней с конечной скоростью, зависящей от свойств среды, передаваясь от одной точки среды к другой. Чем дальше расположена частица среды от источника колебаний, тем позднее она начнет колебаться. Иначе говоря, фазы колебаний частиц среды и источника тем больше отличаются друг от друга, чем больше это расстояние. При изучении распространения колебаний не учитывается дискретное (молекулярное) строение среды и среда рассматривается как сплошная, т. е. непрерывно распределенная в пространстве и обладающая упругими свойствами.

Процесс распространения колебаний в сплошной среде называется волновым процессом (или волной). При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положении равновесия. Вместе с волной 6т частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.

Среди разнообразных волн, встречающихся в природе и технике, выделяются следующие их типы: волны на поверхности жидкости, упругие и электромагнитные волны. Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде. Упругие волны бывают продольные и поперечные. В продольных волнах частицы среды колеблются в направлении распространения волны, в поперечных — в плоскостях, перпендикулярных направлению распространения волны.

Продольные волны могут возбуждаться в средах, в которых возникают упругие силы при деформации сжатия и растяжения, т. е. твердых, жидких и газообразных телах. Поперечные волны могут возбуждаться в среде, в которой возникают упругие силы при деформации сдвига, т. е. в твердых телах; в жидкостях и газах возникают только продольные волны, а в твердых телах — как продольные, так и поперечные.

Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими. На рис. 220 представлена гармоническая поперечная волна, распространяющаяся со скоростью v вдоль оси х, т. е. приведена зависимость между смещением ξ частиц среды, участвующих в волновом процессе, и расстоянием х этих частиц (например, частицы В) от источника колебаний О для какого-то фиксированного момента времени t. Приведенный график функции ξ(х, t) похож на график гармонического колебания, однако они различны по существу. График волны дает зависимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени, а график колебаний — зависимость .смещения данной частицы от времени.

Рис. 220

Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны Я (рис. 220). Длина волны равна тому расстоянию, на которое распространяется определенная фаза колебания за период, т. е.

или, учитывая, что Т = 1/v, где v — частота колебаний,

Если рассмотреть волновой процесс подробнее, то ясно, что колеблются не только частицы, расположенные вдоль оси х, а колеблется совокупность частиц, расположенных в некотором объеме, т. е. волна, распространяясь от источника колебаний, охватывает все новые и новые области пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называется волновым фронтом. Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновых поверхностей можно провести бесчисленное множество, а волновой фронт в каждый момент времени — один. Волновой фронт также является волновой поверхностью. Волновые поверхности могут быть любой формы, а в простейшем случае они представляют собой совокупность плоскостей, параллельных друг другу, или совокупность концентрических сфер. Соответственно волна называется плоской или сферической.

§ 154. УРАВНЕНИЕ БЕГУЩЕЙ ВОЛНЫ. ФАЗОВАЯ СКОРОСТЬ. ВОЛНОВОЕ УРАВНЕНИЕ

Бегущими волнами называются волны, которые переносят в пространстве энергию. Перенос энергии волнами количественно характеризуется вектором плотности потока энергии. Этот вектор для упругих волн называется вектором Умова (по имени русского ученого Н. А. Умова (1846—1915), решившего задачу о распространении энергии в среде). Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно направлению распространения волны.

Для вывода уравнения бегущей волны — зависимости смещения колеблющейся частицы от координат и времени — рассмотрим плоскую волну, предполагая, что колебания носят гармонический характер, а ось х совпадает с направлением распространения волны (рис. 220). В данном случае волновые поверхности перпендикулярны оси х, а так как все точки волновой поверхности колеблются одинаково, то смещение ξ будет зависеть только от х и t, т. е. ξ = ξ(x, t).

На рис. 220 рассмотрим некоторую частицу В среды, находящуюся от источника колебаний О на расстоянии х. Если колебания точек, лежащих в плоскости x=Q, описываются функцией ξ(0, t) = Acosωt, то частица В среды колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источника на т, так как для прохождения волной расстояния х требуется время t = x/v, где v — скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости х, имеет вид

(154.1)

откуда следует, что ξ(х, t) является не только периодической функцией времени, но и периодической функцией координаты х. Уравнение (154.1) есть уравнение бегущей волны. Если плоская волна распространяется в противоположном направлении, то

В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид

(154.2)

где А = const — амплитуда волны, ω — циклическая частота, ϕ0начальная фаза волны, определяемая в общем случае выбором начал отсчета х и t,

[ω(t - x/v) + ϕ0] — фаза плоской волны.

Для характеристики волн используется волновое число

(154.3)

Учитывая (154.3), уравнению (154.2) можно придать вид

(154.4)

Уравнение волны, распространяющейся вдоль отрицательного направления оси х, отличается от (154.4) только знаком члена kx.

Основываясь на формуле Эйлера (140.7), уравнение плоской волны можно записать в виде

где физический смысл имеет лишь действительная часть (см. § 140). Предположим, что при волновом процессе фаза постоянна, т. е.