где J — момент инерции маятника относительно оси, проходящей через точку подвеса О, l — расстояние между ней и центром масс маятника, Fτ = - mgsinα ≈ mgα — возвращающая сила (знак минус обусловлен тем, что направления Fτ и α всегда противоположны; sinα ≈ α соответствует малым колебаниям маятника, т.e. малым отклонениям маятника из положения равновесия). Уравнение (142.4) можно записать в виде
Принимая
получим уравнение
(142.5)
идентичное с (142.1), решение которого (140.1) известно:
(142.6)
Из выражения (142.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω0 (см. (142.5)) и периодом
(142.7)
где L = J/(ml) — приведенная длина физического маятника.
Точка О' на продолжении прямой ОС, отстоящая от точки О подвеса маятника на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), получим
т. е. ОО' всегда больше ОС. Точка подвеса О маятника и центр качаний О' обладают свойством взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса станет новым центром качаний, и период колебаний физического маятника не изменится.
3. Математический маятник — это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити. Момент инерции математического маятника
(142.8)
где l — длина маятника.
Так как математический маятник можно представить как частный случай физического маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (142.8) в формулу (142.7), получим выражение для периода малых колебаний математического маятника
(142.9)
Сравнивая формулы (142.7) и (142.9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Следовательно, приведенная длина физического маятника — это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.
Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины (заряды, токи) периодически изменяются и которые сопровождаются взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.
Рассмотрим последовательные стадии колебательного процесса в идеализированном контуре, сопротивление которого пренебрежимо мало (R ≈ 0). Для возбуждения в контуре колебаний конденсатор предварительно заряжают, сообщая его обкладкам заряды ±Q. Тогда в начальный момент времени t = 0 (рис. 202, а) между обкладками конденсатора возникнет электрическое поле, энергия
которого —
1 Q2 (см. (95.4)). Если замкнуть конденсатор на катушку индук-2C
тивности, он начнет разряжаться, и в контуре потечет возрастающий со временем ток I. В результате энергия электрического поля будет уменьшаться, а энергия магнитного поля катушки (она равна 1/2 LQ2) — возрастать.
Рис. 202
Так как R ≈ 0, то, согласно закону сохранения энергии, полная энергия
так как она на нагревание не расходуется. Поэтому в момент t = 1/4Т, когда конденсатор полностью разрядится, энергия электрического поля обращается в нуль, а энергия магнитного поля (а следовательно, и ток) достигает наибольшего значения (рис. 202, б). Начиная с этого момента ток в контуре будет убывать; следовательно, начнет ослабевать магнитное поле катушки, и в ней индуцируется ток, который течет (согласно правилу Ленца) в том же направлении, что и ток разрядки конденсатора. Конденсатор начнет перезаряжаться, возникнет электрическое поле, стремящееся осла бить ток, который в конце концов обратится в нуль, а заряд на обкладках конденсатора достигнет максимума (рис. 202, в). Далее те же процессы начнут протекать в обратном направлении (рис.
202, г) и система к моменту времени t = T придет в первоначальное состояние (рис. 202, а). После этого начнется повторение рассмотренного цикла разрядки и зарядки конденсатора. Если бы потерь энергии не было, то в контуре совершались бы периодические незатухающие колебания, т. е. периодически изменялись (колебались) бы заряд Q на обкладках конденсатора, напряжение U на конденсаторе и сила тока I, текущего через катушку индуктивности. Следовательно, в контуре возникают электрические колебания, причем колебания сопровождаются превращениями энергий электрического и магнитного полей.
Электрические колебания в колебательном контуре можно сопоставить с механическими колебаниями маятника (рис. 202 внизу), сопровождающимися взаимными превращениями потенциальной и кинетической энергий маятника.
В данном случае энергия электрического поля конденсатора (Q2/(2C)) аналогична потенциальной энергии маятника, энергия магнитного поля катушки (LQ2/2) — кинетической энергии, сила тока в контуре — скорости движения маятника. Индуктивность L играет роль массы m, а сопротивление контура — роль силы трения, действующей на маятник.
Согласно закону Ома, для контура, содержащего катушку индуктивностью L, конденсатор емкостью С и резистор сопротивлением R,
где IR — напряжение на резисторе, UC = Q/C — напряжение на конденсаторе,
ℰs = −
dI - э.д.с. самоиндукции, возникающая в катушке при протекании в dtней переменного тока (ℰs — единственная э.д.с. в контуре). Следовательно,
(143.1)
Разделив (143.1) на L и подставив I = Q и dI = Q&&ɻ, получим дифференциdtальное уравнение колебаний заряда Q в контуре:
(143.2)
В данном колебательном контуре внешние э.д.с. отсутствуют, поэтому рассматриваемые колебания представляют собой свободные колебания (см. § 140). Если со противление R = Q, то свободные электромагнитные колебания в контуре являются гармоническими. Тогда из (143.2) получим дифференциальное уравнение свободных гармонических колебаний заряда в контуре:
Из выражений (142.1) и (140.1) вытекает, что заряд Q совершает гармонические колебания по закону
(143.3)
где Qm — амплитуда колебаний заряда конденсатора с циклической частотой ω0, называемой собственной частотой контура, т. е.
и периодом(143.4) (143.5)
Формула (143.5) впервые было получена У. Томсоном и называется формулой Томсона. Сила тока в колебательном контуре (см. (140.4))
(143.6)(143.7) где Um = Qm/C — амплитуда напряжения.
Из выражений (143.3) и (143.6) вытекает, что колебания тока / опережают по фазе колебания заряда Q на π/2, т. е., когда ток достигает максимального значения, заряд (а также и напряжение (см. (143.7)) обращается в нуль, и наоборот.
§ 144. СЛОЖЕНИЕ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ ОДНОГО НАПРАВЛЕНИЯ И ОДИНАКОВОЙ ЧАСТОТЫ. БИЕНИЯ
Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты
воспользовавшись методом вращающегося вектора амплитуды (см. § 140). Построим векторные диаграммы этих колебаний (рис. 203). Так как векторы A1 и А2 вращаются с одинаковой угловой скоростью ω0, то разность фаз (ϕ1 - ϕ2) между ними остается постоянной. Очевидно, что уравнение результирующего колебания будет