где mi и ri — соответственно масса и радиус-вектор i-й материальной точ-
n ки; n — число материальных точек в системе; m=∑mi , — масса системы.
i=1
Скорость центра масс
n
Учитывая, что pi =mivi a ∑mi , есть импульс р системы, можно напи-
i=1
сать
(9.2)
т. е. импульс системы равен произведению массы системы на скорость ее
центра масс.
Подставив выражение (9.2) в уравнение (9.1), получим
(9.3)
т.е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, приложенных к системе. Выражение (9.3) представляет собой закон движения центра масс.
В соответствии с (9.2) из закона сохранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается неподвижным.
Движение некоторых тел сопровождается изменением их массы, например масса ракеты уменьшается вследствие истечения газов, образующихся при сгорании топлива, и т. п.
Выведем уравнение движения тела переменной массы на примере движения ракеты. Если в момент времени t масса ракеты m, а ее скорость v, то по истечении времени dt ее масса уменьшится на dm и станет равной т—dm, а скорость станет равной v+dv. Изменение импульса системы за отрезок времени dt
где u — скорость истечения газов относительно ракеты. Тогда
(учли, что dmdv — малый высшего порядка малости по сравнению с остальными). Если на систему действуют внешние силы, то dp=Fdt, поэтому
или
(10.1)
Второе слагаемое в правой части (10.1) называют реактивной силой Fp. Если он противоположен v по направлению, то ракета ускоряется, а если совпадает с v, то тормозится.
Таким образом, мы получили уравнение движения тела переменной массы
(10.2)
которое впервые было выведено И. В. Мещерским (1859—1935).
Идея применения реактивной силы для создания летательных аппаратов высказывалась в 1881 г. Н. И. Кибальчичем (1854—1881). К. Э. Циолковский (1857—1935) в 1903 г. опубликовал статью, где предложил теорию движения ракеты и основы теории жидкостного реактивного двигателя. Поэтому его считают основателем отечественной космонавтики.
Применим уравнение (10.1) к движению ракеты, на которую не действуют никакие внешние силы. Полагая F=0 и считая, что скорость выбрасываемых газов относительно ракеты постоянна (ракета движется прямолинейно), получим
откудаЗначение постоянной интегрирования С определим из начальных условий. Если в начальный момент времени скорость ракеты равна нулю, а ее стартовая масса то, то С = u ln m0. Следовательно,
(10.3)
Это соотношение называется формулой Циолковского. Она показывает, что: 1) чем больше конечная масса ракеты т, тем больше должна быть стартовая масса ракеты m0; 2) чем больше скорость истечения и газов, тем больше может быть конечная масса при данной стартовой массе ракеты. Выражения (10.2) и (10.3) получены для нерелятивистских движений, т. е.
для случаев, когда скорости v и u малы по сравнению со скоростью с распространения света в вакууме.
- Что называется механической системой? Какие системы являются замкнутыми? Является ли Вселенная замкнутой системой ? Почему?
- В чем заключается закон сохранения импульса? В каких системах он выполняется? Почему он является фундаментальным законом природы?
- Каким свойством пространство обуславливается справедливость закона сохранения импульса? - Что называется центром масс системы материальных точек? Как движется центр масс замкнутой системы?
ЗАДАЧИ
2.1. По наклонной плоскости с углом наклона а к горизонту, равным 30°, скользит тело. Определить скорость тела в конце третьей секунды от начала скольжения, если коэффициент трения 0,15. [10,9 м/с]
2.2. Самолет описывает петлю Нестерова радиусом 80 м. Какова должна быть наименьшая скорость самолета, чтобы летчик не оторвался от сиденья в верхней части петли? [28 м/с]
2.3. Блок укреплен на вершине двух наклонных плоскостей, составляющих с горизонтом углы α = 30° и α = 45°. Гири равной массы (m1 = m2 =2 кг) соединены нитью, перекинутой через блок. Считая нить и блок невесомыми, принимая коэффициенты трения гирь о наклонные плоскости равными f1 = f2 =f = 0,1 и пренебрегая трением в блоке, определить. 1) ускорение,
с которым движутся гири, 2) силу натяжения нити. [1) 0,24 м/с2; 2) 12 Н]
2.4. На железнодорожной платформе установлена безоткатная пушка, из которой производится выстрел вдоль полотна под углом α=45° к горизонту. Масса платформы с пушкой Л/=20 т, масса снаряда т=10 кг, коэффициент трения между колесами платформы и рельсами f = 0,002. Определить скорость снаряда, если после выстрела платформа откатилась на расстояние s=3 м.
[v0 = M 2 fgs(mcos∂) = 970 м/с]2.5. На катере массой т=5 т находится водомет, выбрасывающий µ=25 кг/с воды со скоростью u = 7 м/с относительно катера назад. Пренебрегая сопротивлением движению катера, определить: 1) скорость катера через 3 мин после на-
чала движения, 2) предельно возможную скорость катера. [1) v = u(1− exp(−µt
m))=4,15 м/с; 2) 7 м/с]§11. ЭНЕРГИЯ, РАБОТА, МОЩНОСТЬ
Энергия — универсальная мера различных форм движения и взаимодействия. С раз личными формами движения материи связывают различные формы энергии: механическую, тепловую, электромагнитную, ядерную и пр. В одних явлениях форма движения материи не изменяется (например, горячее тело нагревает холодное), в других — переходит в иную форму (например, в результате трения механическое движение превращается в тепловое). Однако существенно, что во всех случаях энергия, отданная (в той или иной форме) одним телом другому телу, равна энергии, полученной последним телом.
Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы.
Если тело движется прямолинейно и на него действует постоянная сила F, которая составляет некоторый угол а с направлением перемещения, то работа этой силы равна произведению проекции силы F, на направление перемещения (Fs=Fcos α), умноженной на перемещение точки приложения силы:
(11.1)
В общем случае сила может изменяться как по модулю, так и по направлению, поэтому формулой (11.1) пользоваться нельзя. Если, однако, рассмотреть элементарное перемещение dr, то силу Г можно считать постоянной, а движение точки ее приложения — прямолинейным. Элементарной работой силы F на перемещении dr называется скалярная величина
dA = Fdr = Fcosα ds = F2ds,
где α — угол между векторами F и dr; ds=|dr| — элементарный путь; Fs —
проекция вектора F на вектор dr (рис. 13).
Рис. 13
Работа силы на участке траектории от точки 1 до точки 2 равна алгебраи-
ческой сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу
(11.2)
Для вычисления этого интеграла надо знать зависимость силы Fsот пути t вдоль траектории 1—2. Пусть эта зависимость представлена графически (рис. 14), тогда искомая работа А определяется на графике площадью заштрихованной фигуры. Если, рапример, тело движется прямолинейно, сила F= const и а = const, то получим
где s — пройденный телом путь (см. также формулу (11.1)).
Рис. 14
Из формулы (11.1) следует, что при α < π/2 работа силы положительна, в этом случае составляющая F, совпадает по направлению с вектором скорости движения v (см. рис. 13). Если α > π/2, то работа силы отрицательна. При α = π/2 (сила направлена перпендикулярно перемещению) работа силы равна нулю.
Единица работы — джоуль (Дж): 1 Дж — работа, совершаемая силой 1 Н на пути 1 м(1 Дж=1 Н-м).