В силу однородности пространства (см. § 9) в релятивистской механике выполняется закон сохранения релятивистского импульса: релятивистский импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени. Часто вообще не оговаривают, что рассматривают релятивистский импульс, так как если тела движутся со скоростями, близкими к с, то можно использовать только релятивистское выражение для импульса.
Анализ формул (39.1), (39.4) и (39.2) показывает, что при скоростях, значительно меньших скорости с, уравнение (39.2) переходит в основной закон (см. (6.5)) классической механики. Следовательно, условием применимости законов классической (ньютоновской) механики является условие v«c. Законы классической механики получаются как следствие теории относительности для предельного случая v«c (формально пере ход осуществляется при с → ∞). Таким образом, классическая механика — это механика макротел, движущихся с малыми скоростями (по сравнению со скоростью света в вакууме).
Экспериментальное доказательство зависимости массы от скорости (39.1) является подтверждением справедливости специальной теории относительности. В дальнейшем (см. § 116) будет показано, что на основании этой зависимости производятся расчеты ускорителей.
• Как определяется интервал между событиями? Доказать, что он является инвариантом при переходе от одной инерциальной системы отсчета к другой.
•Какой вид имеет основной закон релятивистской динамики? Чем он отличается от основного закона ньютоновской механики?
• В чем заключается закон сохранения релятивистского импульса?
§ 40. ЗАКОН ВЗАИМОСВЯЗИ МАССЫ И ЭНЕРГИИ
Найдем кинетическую энергию релятивистской частицы. Раньше (§ 12) было показано, что приращение кинетической энергии материальной точки на элементарном перемещении равно работе силы на этом перемещении:
(40.1)
Учитывая, что dr = vdt, и подставив в (40.1) выражение (39.2), получаем
Преобразовав данное выражение с учетом того, что vdv = υdυ, и формулы (39.1), придем к выражению
(40.2)
т. е. приращение кинетической энергии частицы пропорционально приращению ее массы.
Так как кинетическая энергия покоящейся частицы равна нулю, а ее масса равна массе покоя т0, то, проинтегрировав (40.2), получим
(40.3)
или кинетическая энергия релятивистской частицы имеет вид
Выражение (40.4) при скоростях υ ≪ c переходит в классическое:
(40.4)
(разлагая в ряд
при v ≪ c, правомерно пре-небречь членами второго порядка малости).
А. Эйнштейн обобщил положение (40.2), предположив, что оно справедливо не только для кинетической энергии частицы, но и для полной энергии, а именно любое изменение массы Д/я сопровождается изменением полной энергии частицы,
(40.5)
Отсюда А. Эйнштейн пришел к универсальной зависимости между полной энергией тела Е и его массой т:
(40.6)
Уравнение (40.6), равно как и (40.5), выражает фундаментальный закон природы — за кон взаимосвязи (пропорциональности) массы и энергии: полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. Отметим, что в полную энергию Е не входит потенциальная энергия тела во внешнем силовом поле. Закон (40.6) можно, учитывая выражение (40.3), записать в виде
откуда следует, что покоящееся тело (Г=0) также обладает энергией
называемой энергией покоя. В классической механике энергия покоя £о не учитывается, считая, что при υ = 0 энергия покоящегося тела равна нулю.
В силу однородности времени (см. § 13) в релятивистской механике, как и в классической, выполняется закон сохранения энергии: полная энергия замкнутой системы сохраняется, т. е. не изменяется с течением времени.
Из формул (40.6) и (39.4) найдем релятивистское соотношение между полной энергией и импульсом частицы:
(40.7)
Возвращаясь к уравнению (40.6), отметим еще раз, что оно имеет универсальный характер. Оно применимо ко всем формам энергии, т. е. можно утверждать, что с энергией, какой бы формы она ни была, связана масса
m = E 2 (40.8)c
и, наоборот, со всякой массой связана энергия (40.6).
Чтобы охарактеризовать прочность связи и устойчивость системы какихлибо частиц (например, атомного ядра как системы из протонов и нейтронов), вводят понятие энергии связи. Энергия свози системы равна работе, которую необходимо затратить, чтобы разложить эту систему на составные части (например, атомное ядро — на протоны и нейтроны). Энергия связи системы
(40.9)
где m0i, — масса покоя i-й частицы в свободном состоянии; М0— масса
покоя системы, состоящей из n частиц.
Закон взаимосвязи (пропорциональности) массы и энергии блестяще подтвержден экспериментом о выделении энергии при протекании ядерных реакций. Он широко используется для расчета энергетических эффектов при ядерных реакциях и превращениях элементарных частиц.
Рассматривая выводы специальной теории относительности, видим, что она, как, впрочем, и любые крупные открытия, потребовала пересмотра многих установившихся и ставших привычными представлений. Масса тела не остается постоянной величиной, а зависит от скорости тела; длина тел и длительность событий не являются абсолютными величинами, а носят относительный характер; наконец, масса и энергия оказались связанными друг с другом, хотя они и являются качественно различными свойствами материи.
Основной вывод теории относительности сводится к тому, что пространство и время органически взаимосвязаны и образуют единую форму существования материи — пространство-время. Только поэтому пространственновременной интервал между двумя событиями является абсолютным, в то время как пространственные и временные промежутки между этими событиями относительны. Следовательно, вытекающие из преобразований Лоренца следствия являются выражением объективно существующих пространственно-временных соотношений движущейся материи.
• Как выражается кинетическая энергия в релятивистской механике? При каком условии релятивистская формула для кинетической энергии переходит в классическую формулу?
• Сформулируйте и запишите закон взаимосвязи массы и энергии. В чем его физическая сущность? Приведите примеры его экспериментального подтверждения.
ЗАДАЧИ
7.1. Определить собственную длину стержня (длину, измеренную в системе, относительно которой стержень покоится), если в лабораторной системе (системе отсчета, связанной с измерительными приборами) его скорость v = 0,8 с, длина l = 1 м и угол между ним и направлением движения θ=30°. [l0 = l 1−υ22 sin2θ1−υ22 =1,53 м] 7.2. Собственное время жизни частицы отличается на 1.5% от времени жизни по неподвижным часам. Определить β=υ/с. [0,172]
7.3. Тело, масса покоя которого 2 кг, движется со скоростью 200 Мм/с в системе К', перемещающейся относительно системы K со скоростью 200 Мм/с. Определить: 1) скорость тела относительно системы К; 2) его массу в этой системе. [1) 277 Мм/с; 2) 52 кг]
7.4. Воспользовавшись тем, что интервал — инвариантная величина по отношенною к преобразованиям координат, определить расстояние, которое пролетел π-мезон с момента рождения до распада, если время его жизни в этой системе отсчета ∆t = 5 мкс, а собственное время жизни (время, отсчитанное noчасам, движущимся вместе с телом) ∆t0 =«2,2 мкс. [1.35 км]
7.5. Определить скорость, при которой релятивистский импульс частицы превышает ее ньютонов ский импульс в пять раз. [0,98 с]
7.6. Определить скорость, полученную электроном, если он прошел ускоряющую разность потенциалов 1,2 МэВ. [2,86 Мм/с]
7.7. Определить релятивистский импульс электрона, кинетическая энергия которого 1 ГэВ. [5,34 10-19 H с]
§ 41. СТАТИСТИЧЕСКИЙ И ТЕРМОДИНАМИЧЕСКИЙ МЕТОДЫ. ОПЫТНЫЕ ЗАКОНЫ ИДЕАЛЬНОГО ГАЗА
Статистический и термодинамический методы исследования. Молекулярная физика и термодинамика — разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют два качественно различных и взаимно дополняющих друг друга метода: статистический (молекулярно-кинетнческнй) и термодинамический. Первый лежит в основе молекулярной физики, второй — термодинамики.