Подставляя (30.3) и (30.4) в (30.1) и приравнивая (30.1) и (30.2), получим
(30.5)Согласно уравнению неразрывности для несжимаемой жидкости (29.1), объем, занимаемый жидкостью, остается постоянным, т. е.
Разделив выражение (30.5) на ∆V, получим
где ρ — плотность жидкости. Но так как сечения выбирались произвольно, то можем записать
(30.6)
Выражение (30.6) выведено швейцарским физиком Д. Бернулли (1700— 1782; опубликовано в 1738 г.) и называется уравнением Бернуллн. Как видно из его вывода, уравнение Бернулли — выражение закона сохранения энергии применительно к установившемуся течению идеальной жидкости. Оно хорошо выполняется и для реальных жидкостей, внутреннее трение которых не очень велико.
Величина р в формуле (30.6) называется статическим давлением (давление жидкости на поверхность обтекаемого ею тела), величина pv2/2 — динамическим давлением. Как уже указывалось выше (см. § 28), величина pgh представляет собой гидростатическое давление.
Для горизонтальной трубки тока (h1 = h2 выражение (30.6) принимает вид
(30.7)
где p + pv2/2 называется полным давлением.
Из уравнения Бернулли (30.7) для горизонтальной трубки тока и уравнения неразрывности (29.1) следует, что при течении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а статическое давление больше в более широких местах, т. е. там, где скорость меньше. Это можно продемонстрировать, установив вдоль трубы ряд манометров (рис. 48). В соответствии с уравнением Бернулли опыт показывает, что в манометрической трубке В, прикрепленной к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А я С, прикрепленных к широкой части трубы.
Рис. 48
Так как динамическое давление связано со скоростью движения жидкости (газа), то уравнение Бернулли позволяет измерять скорость потока жидкости. Для этого применяется трубка Пито — Прандтля (рис. 49). Прибор состоит из двух изогнутых под прямым углом трубок, противоположные концы которых присоединены к манометру. C помощью одной из трубок измеряется полное давление (р0), с помощью другой — статическое (р). Манометром измеряют разность давлений:
(30.8)
где ρ0 — плотность жидкости в манометре. С другой стороны, согласно
уравнению Бернулли, разность полного и статического давлений равна динамическому давлению:
(30.9)
Рис. 49
Из формул (30.8) и (30.9) получаем искомую скорость потока жидкости:
Уменьшение статического давления в точках, где скорость потока больше, положено в основу работы водоструйного насоса (рис. 50). Струя воды подается в трубку, открытую в атмосферу, так что давление на выходе из трубки равно атмосферному. В трубке имеется сужение, по которому вода течет с большей скоростью. В этом месте давление меньше атмосферного. Это давление устанавливается и в откачанном сосуде, который связан с трубкой через разрыв, имеющийся в ее узкой части. Воздух увлекается вытекающей с большой скоростью водой из узкого конца. Таким образом можно откачивать воздух из сосуда до давления 100 мм рт. ст. (1 мм рт. ст. = 133,32 Па).
Рис. 50
Уравнение Бернулли используется для нахождения скорости истечения жидкости через отверстие в стенке или дне сосуда. Рассмотрим цилиндрический сосуд с жидкостью, в боковой стенке которого на некоторой глубине ниже уровня жидкости имеется маленькое отверстие (рис. 51).
Рис. 51
Рассмотрим два сечения (на уровне AI свободной поверхности жидкости в сосуде и на уровне А2 выхода ее из отверстия) и напишем уравнение Бернулли:
Так как давления р1 и p2 в жидкости на уровнях первого и второго сечений равны атмосферному, т. е. р1 = р2, то уравнение будет иметь вид
Из уравнения неразрывности (29.1) следует, что v2/v1 = S1/S2, где S1 и S2 — площади поперечных сечений сосуда и отверстия. Если S1 >> S2, то членом v21/2 можно пренебречь и
Это выражение получило название формулы Торричелли[7].
§ 31. ВЯЗКОСТЬ (ВНУТРЕННЕЕ ТРЕНИЕ). ЛАМИНАРНЫЙ И ТУРБУЛЕНТНЫЙ РЕЖИМЫ ТЕЧЕНИЯ ЖИДКОСТЕЙ
Вязкость (внутреннее трение) — это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. При перемещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по касательной к поверхности слоев. Действие этих сил проявляется в том, что со стороны слоя, движущегося быстрее, на слой, движущийся медлен нее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.
Сила внутреннего трения F тем больше, чем больше рассматриваемая площадь поверхности слоя S (рис. 52), и зависит от того, насколько быстро меняется скорость течения жидкости при переходе от слоя к слою. На рисунке представлены два слоя, отстоящие друг от друга на расстоянии ∆х и движущиеся со скоростями v1 и v2. При этом v1— v2 = ∆v. Направление, в котором отсчитывается расстояние между слоями, перпендикулярно скорости течения слоев. Величина — показывает, как быстро меняется скорость при переходе от слоя к слою в направлении х, перпендикулярном направлению движения слоев, и называется градиентом скорости. Таким образом, модуль силы внутреннего трения
(31.1)
где коэффициент пропорциональности η, зависящий от природы жидко-
сти, называется динамической вязкостью (или просто вязкостью).
Единица вязкости — паскаль-секунда (Па⋅с): 1 Па⋅с равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения 1 Н на 1 м2 поверхности касания слоев (1 Па⋅с =1 Н⋅с/м2).
Рис. 52
Чем больше вязкость, тем сильнее жидкость отличается от идеальной, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причем характер этой зависимости для жидкостей и газов различен
(для жидкостей η с увеличением температуры уменьшается, у газов, наоборот, увеличивается), что указывает на различие в них механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Например, вязкость касторового масла в интервале 18—40°С падает в четыре раза. Российский физик П. Л. Капица (1894—1984; Нобелевская премия 1978 г.) открыл, что при температуре 2,17 К жидкий гелий переходит в сверхтекучее состояние, в котором его вязкость равна нулю.
Существует два режима течения жидкостей. Течение называется ламинарным (слоистым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).
Ламинарное течение жидкости наблюдается при небольших скоростях ее движения. Внешний слой жидкости, примыкающий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скорости последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы.
При турбулентном течении частицы жидкости приобретают составляющие скоростей, перпендикулярные течению, поэтому они могут переходить из одного слоя в другой. Скорость частиц жидкости быстро возрастает по мере удаления от поверхности трубы, затем изменяется довольно незначительно. Так как частицы жидкости переходят из одного слоя в другой, то их скорости в различных слоях мало отличаются. Из-за большого градиента скоростей у поверхности трубы обычно происходит образование вихрей.
Профиль усредненной скорости при турбулентном течении в трубах (рис. 53) отличается от параболического профиля при ламинарном течении более быстрым возрастанием скорости у стенок трубы и меньшей кривизной в центральной части течения. Характер течения зависит от безразмерной величины, называемой числом Рейнольдса (О.Рейнольде (1842—1912) — английский ученый):