Согласно формуле (12.2), работа, совершаемая консервативными силами, равна изменению потенциальной энергии системы, взятому со знаком минус, т.е.
Из формулы (25.2) получаем
(25.3)
Так как в формулы входит только разность потенциальных энергий в двух состояниях, то для удобства принимают потенциальную энергию при
R2 →∞ равной нулю limП2=0. Тогда (25.3) запишется в виде
R2→∞
П1 = — GmM/R1. Так как первая точка была выбрана произвольно, то
Величинаявляется энергетической характеристикой поля тяготения и называется
потенциалом. Потенциал поля тяготения <р — скалярная величина, определяемая потенциальной энергией тела единичной массы в данной точке поля или работой по перемещению единичной массы из данной точки поля в бесконечность. Таким образом, потенциал поля тяготения, создаваемого телом массой
М, равен
(25.4)
где R — расстояние от этого тела до рассматриваемой точки.
Из формулы (25.4) вытекает, что геометрическое место точек с одинаковым потенциалом образует сферическую поверхность (R = const). Такие поверхности, для которых потенциал постоянен, называются эквипотенциальными.
Рассмотрим взаимосвязь между потенциалом (ϕ) поля тяготения и его напряженностью (g). Из выражений (25.1) и (25.4) следует, что элементарная работа dA, совершаемая силами поля при малом перемещении тела массой т, равна
С другой стороны, dA=Fdl (dl — элементарное перемещение). Учитывая (24.1), полу чаем, что dA=mgdl, т. е. mgdl= —mdϕ, или
Величина dϕ/dl характеризует изменение потенциала на единицу длины в направлении перемещения в поле тяготения. Можно показать, что
(25.5)
∂ϕ ∂ϕ ∂ϕ
где gradϕ= i + j + k - градиент скаляра ϕ (см. (12.5)). Знак ми-∂x ∂y ∂z
нус в формуле (25.5) показывает, что вектор напряженности g направлен в сторону убывания потенциала.
В качестве частного примера, исходя из представлений теории тяготения, рассмотрим потенциальную энергию тела, находящегося на высоте h относительно Земли:
где R0 — радиус Земли. Так как
(25.6)
то, учитывая условие h << R0, получаем
Таким образом, мы вывели формулу, совпадающую с (12.7), которая постулировалась раньше.
§ 26. КОСМИЧЕСКИЕ СКОРОСТИ
Для запуска ракет в космическое пространство надо в зависимости от поставленных целей сообщать им определенные начальные скорости, называемые космическими.
Первой космической (или круговой) скоростью υ1 называют такую минимальную скорость, которую надо сообщить телу, чтобы оно могло двигаться вокруг Земли по круговой орбите, т. е. превратиться в искусственный спутник Земли. На спутник, движущийся по круговой орбите радиусом г, действует сила тяготения Земли, сообщающая ему нормальное ускорение υ21/r . По второму закону Ньютона,
Если спутник движется вблизи поверхности Земли, тогда r ≈ Ro (радиус Земли) и g=GM/R02(см. (25.6)), поэтому у поверхности Земли
Первой космической скорости недостаточно для того, чтобы тело могло выйти из сферы земного притяжения. Необходимая для этого скорость называется второй космической.
Второй космической (или параболической) скоростью v2называют ту наименьшую скорость, которую надо сообщить телу, чтобы оно могло преодолеть притяжение Земли и превратиться в спутник Солнца, т. е. чтобы его орбита в поле тяготения Земли стала параболической. Для того чтобы тело (при отсутствии сопротивления среды) могло преодолеть земное притяжение и уйти в космическое пространство, необходимо, чтобы его кинетическая энергия была равна работе, совершаемой против сил тяготения:
откуда
Третьей космической скоростью v3 называют скорость, которую необходимо сообщить телу на Земле, чтобы оно покинуло пределы Солнечной системы, преодолев притяжение Солнца. Третья космическая скорость v3=16,7 км/с. Сообщение телам таких больших начальных скоростей является сложной технической задачей. Ее первое теоретическое осмысление начато К. Э. Циолковским, им была выведена уже рассмотренная нами формула (10.3), позволяющая рассчитывать скорость ракет.
Впервые космические скорости были достигнуты в СССР: первая — при запуске первого искусственного спутника Земли в 1957 г., вторая — при запуске ракеты в 1959 г. После исторического полета Ю. А. Гагарина в 1961 г. начинается бурное развитие космонавтики.
§ 27. НЕИНЕРЦИАЛЬНЫЕ СИСТЕМЫ ОТСЧЕТА. СИЛЫ ИНЕРЦИИ
Как уже отмечалось (см. § 5, 6), законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, движущиеся относительно инерциальной системы с ускорением, называются неинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже несправедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода — так называемые силы терцин.
Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции Fин при этом должны быть такими, чтобы вместе с силами F, обусловленными воздействием тел друг на друга, они сообщали телу ускорение а', каким оно обладает в неинерциальных системах отсчета, т. е.
Так как F = ma (а — ускорение тела в инерциальной системе отсчета), то
(27.1)
Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил: 1) силы инерции при ускоренном поступательном движении системы отсчета; 2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета; 3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.
Рассмотрим эти случаи.
1. Силы терцин при ускоренном поступательном движения системы отсчета. Пусть на тележке к штативу на нити подвешен шарик массой т (рис. 40). Пока тележка покоится или движется равномерно и прямолинейно, вить, удерживающая шарик, занимает вертикальное положение и сила тяжести Р уравновешивается силой реакции нити Т.
Рис. 40
Если тележку привести в поступательное движение с ускорением «о, то нить начнет отклоняться от вертикали назад до такого угла а, пока результирующая сила F = P + T не обеспечит ускорение шарика, равное OQ. Таким образом, результирующая сила F направлена в сторону ускорения тележки IQ и для установившегося движения шарика (шарик теперь движется вместе с тележкой с ускорением а0) равна F = mgtgα = ma0, откуда
т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки.
Относительно системы отсчета, связанной с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой Fи, которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом,
(27.2)
Проявление сил инерции при поступательном движении наблюдается в повседневных явлениях. Например, когда поезд набирает скорость, то пассажир, сидящий по ходу поезда, под действием силы инерции прижимается к спинке сиденья. Наоборот, при торможении поезда сила инерции направлена в противоположную сторону и пассажир удаляется от спинки сиденья. Особенно эти силы заметны при внезапном торможении поезда. Силы инерции проявляются в перегрузках, которые возникают при запуске и торможении космических кораблей.