Смекни!
smekni.com

Курс физики (стр. 10 из 157)

Рис. 23

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси (рис. 23). Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом r и внешним r+dr. Момент инерции каждого полого цилиндра dJ = r2dm (так как dr << r, то считаем, что расстояние всех точек цилиндра от оси равно г), где dm — масса всего элементарного цилиндра; его объем 2πrhdr. Если ρ — плотность материала, то dm = 2πrhρdr и dJ = 2πhρr3dr. Тогда момент инерции сплошного цилиндра

но так как πR2h — объем цилиндра, то его масса m = πR2, а момент

инерции

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно произвольной оси равен моменту его инерции Jcотносительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы т тела на квадрат расстояния а между осями:

(16.1)

В заключение приведем значения моментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т — масса тела).

Таблица 1

Тело

Положение оси

Момент инерции

Полый тонкостенный цилиндр радиусом R

Сплошной цилиндр или диск

радиусом R

Прямой тонкий стержень длиной l

Прямой тонкий стержень длиной l

Шар радиусом R

Ось симметрии

Тоже

Ось перпендикулярна стержню и проходит через его середину

Ось перпендикулярна стержню и проходит через его конец

Ось проходит через центр шара

тR2

1/2тR2

1/12ml2

1/3ml2

2/5тR2

§ 17. КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ВРАЩЕНИЯ

Рассмотрим абсолютно твердое тело (см. § 1), вращающееся около неподвижной оси z, проходящей через него (рис. 24). Мысленно разобьем это тело на маленькие объемы с элементарными массами т1, т2, ..., тn, находящиеся на расстоянии гь г2,..., гn от оси.

При вращении твердого тела относительно неподвижной оси отдельные его элементарные объемы массами mi опишут окружности различных радиусов ri и имеют различные линейные скорости vi. Но так как мы рассматриваем абсолютно твердое тело, то угловая скорость вращения этих объемов одинакова:

(17.1)

Рис. 24

Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его элементарных объемов:

Используя выражение (17.1), получаем

где Jz— момент инерции тела относительно оси z. Таким образом, кине-

тическая энергия вращающегося тела

(17.2)

Из сравнения формулы (17.2) с выражением (12.1) для кинетической энергии тела, движущегося поступательно (Г=ти2/2), следует, что момент инерции — мера инертности тела при вращательном движении. Формула (17.2) справедлива для тела, вращающегося вокруг неподвижной оси.

В случае плоского движения тела, например цилиндра, скатывающегося с наклон ной плоскости без скольжения, энергия движения складывается из энергии поступательного движения и энергии вращения:

где т — масса катящегося тела; vc— скорость центра масс тела; Jc— момент инерции тела относительно оси, проходящей через его центр масс; ω — угловая скорость тела.

§ 18. МОМЕНТ СИЛЫ. УРАВНЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА

Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора г, проведенного из точки О в точку А приложения силы, на силу F (рис. 25):

М = [rF].

Здесь М — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от г к F.

Рис. 25.

Модуль момента силы

где α — угол между г и F; r⋅sinα = l — кратчайшее расстояние между ли-

нией действия силы и точкой О — плечо силы.

Рис. 26

Моментом силы относительно неподвижной оси z называется скалярная величина Мz, равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z (рис. 26). Значение момента Мгне зависит от выбора положения точки О на оси z.

Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью:

Mz = [rF]z.

Найдем выражение для работы при вращении тела (рис. 27). Пусть сила F приложена в точке В, находящейся от оси z на расстоянии г, α — угол между направлением силы и радиусом-вектором г. Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол dϕ точка приложения В проходит путь ds=rdϕ и работа равна произведению проекции силы на направление смещения на величину смещения:

Рис. 27

Учитывая (18.1), можем записать

где Frsinα= Fl = M z — момент силы относительно оси z. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол поворота. Работа при вращении тела идет на увеличение его кинетической энергии: dA = dT, но dT = dJ zω2  = J zωdω, поэтому M z dϕ= J zωdω,

 2 

или M z

dϕ= J zωdω. dt dt

Учитывая, что ω=

dϕ , получаем dt

(18.3)

Уравнение (18.3) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Можно показать, что если ось z совпадает с главной осью инерции (см. §

20), проходящей через центр масс, то имеет место векторное равенство

(18.4)

где J — главный момент инерции тела (момент инерции относительно главной оси).

§ 19. МОМЕНТ ИМПУЛЬСА И ЗАКОН ЕГО СОХРАНЕНИЯ

При сравнении законов вращательного и поступательного движений просматривается аналогия между ними, только во вращательном движении вместо силы «выступает» ее момент, роль массы «играет» момент инерции. Какая же величина будет аналогом импульса тела? Ею является момент импульса тела относительно оси.

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где г — радиус-вектор, проведенный из точки О в точку A; p = mv — импульс материальной точки (рис. 28); L — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от г к р. Модуль вектора момента импульса

где α — угол между векторами г и р, / — плечо вектора р относительно точки О.

Рис. 28

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса L, не зависит от положения точки О на оси г.