Смекни!
smekni.com

Электризация тел (стр. 1 из 4)

электризация тел.

2. Электризация тел.

Эти явления были обнаружены еще в глубокой древности. Древнегреческие ученые заметили, что янтарь (окаменевшая смола хвойных деревьев, которые росли на Земле много сотен тысяч лет назад) при натирании его шерстью начинает притягивать к себе различные тела. По-гречески янтарь - электрон, отсюда произошло название “электричество”.

Про тело, которое после натирания притягивает к себе другие тела, говорят, что оно наэлектризовано или что ему сообщен электрический заряд.

Электризоваться могут тела, сделанные из разных веществ. Легко наэлектризовать натиранием о шерсть палочки из резины, серы, эбонита, пластмассы, капрона.

Электризация тел происходит при соприкосновении и последующем разделении тел. Трут тела друг о друга лишь для того, чтобы увеличить площадь их соприкосновения.

В электризации всегда участвуют два тела: в рассмотренных выше опытах стеклянная палочка соприкасалась с листом бумаги, кусочек янтаря - с мехом или шерстью, палочка из плексигласа - с шелком. При этом электризуются оба тела. Например, при соприкосновении стеклянной палочки и куска резины электризуются и стекло, и резина. Резина, как и стекло начинает притягивать к себе легкие тела.

Электрический заряд можно передать от одного тела к другому. Для этого нужно коснуться наэлектризованным телом другого тела, и тогда часть электрического заряда перейдет на него. Чтобы убедиться, что и второе тело наэлектризовано, нужно поднести к нему мелкие листочки бумаги и посмотреть, будут ли они притягиваться.

3. Два рода зарядов. Взаимодействие заряженных тел.

Все электризованные тела притягивают к себе другие тела, например листочки бумаги. По притяжению тел нельзя отличить электрический заряд стеклянной палочки, потертой о шелк , от заряда, полученного на эбонитовой палочке, потертая о них. Ведь обе наэлектризованные палочки притягивают листочки бумаги.

Означает ли это, что заряды, полученные на телах, сделанных из различных веществ, ничем не отличаются друг от друга?

Обратимся к опытам. Наэлектризуем эбонитовую палочку, подвешенную на нити. Приблизим к ней другую такую же палочку, наэлектризованную трением о тот же кусочек меха. Палочки оттолкнуться Так как палочки одинаковые и наэлектризовали их трением об одно и тоже тело, можно сказать, что на них были заряды одного рода. Значит, тела, имеющие заряды одного рода, взаимно отталкиваются.

Теперь поднесем к наэлектризованной эбонитовой палочке стеклянную палочку, потертую о шелк. Мы увидим, что стеклянная и эбонитовая палочки взаимно притягиваются (рис.№2). Следовательно, заряд, полученный на стекле, потертом о шелк, другого рода, чем на эбоните, потертом о мех. Значит, существует другой род электрических зарядов.

Будим приближать к подвешенной наэлектризованной эбонитовой палочке наэлектризованные тела из различных веществ: резины, плексигласа, пластмассы, капрона. Мы увидим, что в одних случаях эбонитовая палочка отталкивается от тел, поднесенных к ней, а в других - притягивается. Если эбонитовая палочка оттолкнулась, значит, на теле, поднесенном к ней, заряд такого же рода, что и на ней. А заряд тех тел, к которым эбонитовая палочка притянулась, сходен с зарядом, полученном на стекле, потертом о шелк. Поэтому можно считать, что существует только два рода электрических зарядов.

Заряд, полученный на стекле потертом о шелк ( и на всех телах, где получается заряд такого же рода ), назвали положительным, а заряд, полученный на янтаре ( а также эбоните, сере, резине ), потертом о шерсть назвали отрицательным, т. е. зарядам приписали знаки “+” и “-”.

И так, опыты показали, что существует два рода электрических зарядов - положительные и отрицательные заряды и что наэлектризованные тела по-разному взаимодействуют друг с другом.

Тела, имеющие электрические заряды одинакового знака, взаимно отталкиваются, а тела, имеющие заряды противоположного знака, взаимно притягиваются.

4. Электроскоп. Проводники и не проводники электричества.

Если тела наэлектризованы, то они притягиваются друг к другу или взаимно отталкиваются. По притяжению или отталкиванию можно судить, сообщен ли телу электрический заряд. Поэтому и устройство прибора, при помощи которого выясняют, наэлектризовано ли тело, основано на взаимодействии заряженных тел. Этот прибор называется электроскопом (от греч. слов электрон и скопео - наблюдать, обнаруживать).

В электроскопе через пластмассовую пробку (рис.№3), вставленную в металлическую оправу, пропущен металлический стержень, на конце которого укреплены два листочка из тонкой бумаги. Оправа с обеих сторон закрыта стеклами.

Чем больше заряд электроскопа , тем больше сила отталкивания листочков и тем на больший угол они разойдутся. Значит, по изменению угла расхождение листочков электроскопа можно судить, увеличился или уменьшился его заряд.

Если прикоснуться к заряженному телу (например, к электроскопу) рукой, оно разрядиться. Электрические заряды перейдут на наше тело и через него могут уйти в землю. Разредиться заряженное тело и в том случае если соединить его с землей металлическим предметом, например железной или медной проволокой. Но если заряженное тело соединить с землей стеклянной или эбонитовой палочкой, то электрические заряды по ним не уйдут в землю. В этом случае заряженное тело не разрядится.

По способности проводить электрические заряды вещества условно делятся на проводники и непроводники электричества.

Все металлы, почва, растворы солей и кислот в воде - хорошие проводники электричества.

К непроводникам электричества, или диэлектрикам, относятся фарфор, эбонит, стекло, янтарь, резина, шелк, капрон, пластмассы, керосин, воздух (газы).

Тела, изготовленные из диэлектриков, называются изоляторами ( от греч. слова изоляро - уединять).

5. Делимость электрического заряда. Электрон.

Зарядим металлический шар, прикрепленный к стержню электроскопа (рис. №4а). Соединим этот шар с металлическим проводником А, держа его за ручку В, изготовленную из диэлектрика, с другим точно таким же, но незаряженным шаром, находящемся на втором электроскопе. Половина заряда перейдет с первого шара на второй (рис. №4б). Значит, первоначальный заряд разрядился на две равные части.

Теперь разъединим шары и коснемся второго шара рукой. От этого он потеряет заряд - разрядиться. Присоединим его снова к первому шару, на котором осталась половина первоначального заряда. Оставшийся заряд снова разделиться на две равные части, и на первом шаре останется четвертая часть первоначального заряда.

Таким же образом можно получить одну восьмую, одну шестнадцатую часть заряда и т. д.

Таким образом, опыт показывает, что электрический заряд может иметь разное значение. Электрический заряд - физическая величина.

За единицу электрического заряда принят один кулон (обозначается 1 Кл). Единица названа так в честь французского физика Ш. Кулона.

В опыте изображенным на рисунке №4, показано, что электрический заряд можно разделить на части.

А существует ли придел деления заряда?

Чтобы ответить на этот вопрос, понадобилось выполнять более сложные и точные опыты, чем описанные выше, т. к. очень скоро оставшийся на шаре электроскопа заряд становиться таким малым, что обнаружить его при помощи электроскопа не удается.

Для деления заряда на очень маленькие порции нужно передавать его не шарам, а маленьким крупинкам металла или капелькам жидкости. Измеряя заряд, полученный на таких маленьких телах, установили, что можно получить порции заряда, в миллиарды миллиардов раз меньше, чем в описанном опыте. Однако во всех опытах разделить заряд дальше определенного значения не удавалось.

Это позволило предположить, что электрический заряд имеет придел делимости или, точнее, что существуют заряженные частица, которая имеет самый малый заряд, далее уже не делимый.

Чтобы доказать, что существует придел деления электрического заряда, и установить, каков этот придел, ученые проводили специальные опыты. Например, советский ученый А. Ф. Иоффе поставил опыт, в котором электризовали мелкие пылинки цинка, видимые только под микроскопом. Заряд пылинок несколько раз меняли, и каждый раз измеряли, на сколько изменился заряд. Опыты показали, что все изменения заряда пылинки были в целое число раз (т. е. в 2, 3, 4, 5 и т. д.)больше некоторого определенного наименьшего заряда, т. е. заряд пылинки изменялся хотя и очень малыми, но целыми порциями. Так как заряд с пылинки уходит вместе с частицей вещества, то Иоффе сделал вывод, что в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже не делимый.

Эту частицу назвали электрон.

Значение заряда электрона впервые определил американский ученый Р. Милликен. В своих опытах, сходных с опытами А. Ф. Иоффе, он пользовался мелкими капельками масла.

Заряд электрона - отрицательный, равен он - 1,610 Кл (0,000 000 000 000 000 000 16 Кл). Электрический заряд - одно из основных свойств электрона. Этот заряд нельзя “снять” с электрона.

Масса электрона равна 9,110 кг, она в 3700 раз меньше массы молекулы водорода, наименьшей из всех молекул. Крылышко мухи имеет массу, примерно в 510 большую, чем масса электрона.

6. Ядерная модель строения атома

Изучение строения атома практически началось в 1897-1898 гг., после того как была окончательно установлена природа катодных лучей как потока электронов и были определены величина заряда и масса электрона. Факт выделения электронов самыми разнообразными веществами приводил к выводу, что электроны входят в состав всех атомов. Но атом в целом электрически нейтрален, следовательно, он должен содержать в себе еще другую составную часть, заряженную положительно, причем ее заряд должен уравновешивать сумму отрицательных зарядов электронов.

Эта положительно заряженная часть атома была открыта в 1911 г. Эрнестом Резерфордом (1871-1937). Резерфорд предложил следующую схему строения атома. В центре атома находится положительно заряженное ядро, вокруг которого по разным орбитам вращаются электроны. Возникающая при их вращении центробежная сила уравновешивается притяжением между ядром и электронами, вследствие чего они остаются на определенных расстояниях от ядра. Суммарный отрицательный заряд электронов численно равен положительному заряду ядра, так что атом в целом электронейтрален. Так как масса электронов ничтожно мала, то почти вся масса атома сосредоточена в его ядре. Наоборот, размер ядер чрезвычайно мал даже по сравнению с размером самих атомов: диаметр атома - величина порядка 10 см, а диаметр ядра - порядка 10 - 10 см. Отсюда ясно, что на долю ядра и электронов, число которых, как увидим дальше, сравнительно невелико, приходится лишь ничтожная часть всего пространства, занятого атомной системой (рис. №5)