Смекни!
smekni.com

Составление уравнений равновесия и расчет действующих сил (стр. 2 из 4)

Рис С 2.0.

Решение:

1) Рассмотрим равновесие плиты. На нее действуют заданные силы:

пара сил с моментом М, а также реакции связей. Реакцию сферического шарнира разложим на 3 составляющие:
цилиндрического шарнира (подшипника) - на две составляющие:
(в плоскости перпендикулярной оси подшипника), реакцию
стержня направим вдоль стержня, предполагая, что он растянут (рис. С 2.0.)

2) Для определения

составляем равновесия, действующей на плиту пространственной системы сил:

(1)

(2)

(3)

(4)

(5)

(6)

Из уравнения (4) находим N:

Из уравнения (5) находим ZB:

Из уравнения (1) находим XA:

Из уравнения (6) находим YB^


Из уравнения (2) находим YA:

Из уравнения (3) находим ZA:

Ответ:

XA= -1,67kH

YA= -29,11kH

ZA= -0,10kH

YB=25,11kH

ZB=2,60kH

N= -5,39kH

Знаки указывают, что силы

направлены противоположно показанным на рис. С 2.0.

Задача К1

Дано:

Три движения точки на плоскости

Найти:

- уравнение траектории точки

для момента времени

y

B


x

Рис. К 1.0.

Решение:

1) Для определения уравнения траектории исключим из заданных уравнений движения время t:

(1)

Преобразуя систему (1), получим:

(2)

Поскольку время е входит в аргументы тригометрических функций, где один аргумент вдвое больше другого, используем формулу:

то есть:

Итак, получаем:

(3)

Преобразуя систему (3), получим:

(4)

Преобразуем:

Упрощая выражение, получим:

(5)

Выражение (5) – это уравнение траектории точки. График – парабола с вершиной в точке (0;11) на рис. К.1.0 а

2) Скорость точки найдем по ее траектории на координатной оси:

см/с

y

(0;11)

y=-0,375x2+11


(-5,4;0)(5,4;0)

x

Рис. К 1.0 а

При t=1 сек, находим

При t=t1=1 сек, находим

Находим скорость точки:

3) Аналогично найдем уравнение точки:

При t=t1=1 сек, находим

При t=t1=1 сек, находим:

Находим ускорение точки:

Найдем касательное ускорение, дифференцируя по времени равенства:

Учитывая найденные значения

при t= 1 сек, получим:

5)Нормальное ускорение определяется по формуле:


6)Радиус кривизны траектории определяется по формуле:

Ответ:

a1=1,73 см/с2

aT=1,07 см/с2

an=1,36 cм/c2

=7,53 см

Задача К2

Дано:

l1=0,4 м

l2=1,2 м

l3=1,4 м

l4=0,8 м

=60°

=60°

=60°

=90°

=120°

4=3с-2

=10с-2

Найти:

-?