Смекни!
smekni.com

Напряжения переменные во времени (стр. 7 из 8)

Наряду с коэффициентом запаса по усталостному разрушению должен быть определен коэффициент запаса по текучести.

При изгибе (или при растяжении-сжатии)

(24.15)

при кручении

(25.15)

В качестве расчетного следует принимать меньший из коэффи­циентов запаса, определенных по формулам (22.15) и (24.15), или (23.15) и (25.15).

Выше указывалось, что в большинстве случаев расчеты па усталостную прочность выполняют как проверочные. Однако в некоторых простейших случаях возможен проектный расчет на усталостную прочность по допускаемому напряжению

, соот­ветствующему заданной характеристике цикла (
или
). Выведем формулу для допускаемого нормального напряжения при цикле с характеристикой
. Полагая в формуле (22.15)
, имеем

Отсюда

,

,

но

и, следовательно

(26.15)

Аналогично допускаемое касательное напряжение

(27.15)

Приведем теперь без обоснований зависимость для определения коэффициента запаса прочности при работе бруса на совместное действие изгиба с кручением, или кручения с растяжением (сжа­тием), или изгиба с кручением и растяжением (сжатием), т. е. для тех случаев, когда в опасной точке детали возникает плоское напряженное состояние. В указанных случаях общий коэффициент запаса прочности определяется из выражения

(28.15)

Здесь

- общий коэффициент запаса прочности;
- коэффициент запаса прочности по нормальным напряжениям;
- коэффициент запаса прочности по касательным напряжениям.

Аналогично определяется общий коэффициент запаса по пре­делу текучести—следует лишь заменить

и
соответственно на
и
.

Формула (28.15) применима в случае, если нормальные и каса­тельные напряжения в проверяемой точке детали изменяются син­хронно, т.е. одновременно достигают своих максимальных и мини­мальных значений. Указания о выполнении расчетов в случаях, когда это условие не соблюдается, приводятся в специальной литературе.

Формула (28.15) обычно применяется при уточненном прове­рочном расчете валов. При этом часто определение коэффициента запаса приходится выполнять для нескольких сечений вала, так как без расчета нельзя установить, какое из них является опасным. Сечение, для которого коэффициент запаса прочности имеет мини­мальное значение, и является опасным.

Примеры расчета

Пример 1.15.

Цилиндрический стержень с поперечным отверстием (рис. 11.15) изготовлен из стали 45 (

,
,
. Стержень работает на растяжение при нагрузке, изменяющейся по отнулевому

(пульсирующему) циклу. Определить коэффи­циент запаса прочности для опасного сечения стержня, если


Как изменится коэффициент запаса, если стержень изготовлен из хромистой стали 40Х(

,
,
?В этом случае
.

Решение. Коэффициент запаса по усталостному разрушению определим по формуле (22.15) с заменой

на
:

По табл. 1.15,

.

Общий коэффициент снижения предела выносливости при симметричном цикле

При отнулевом (пульсирующем) цикле

Номинальное значение максимального напряжения для опасного сечения (про­ходящего через центр отверстия)

Таким образом,

Для стали 40X

По формуле (22.15),

Таким образом, в данном случае применение более качественной легированной стали не дает почти никакого эффекта—коэффициент запаса во втором случае всего на 0,5% больше, чем в первом. Это объясняется тем, что более прочная легированная сталь чувствительнее к влиянию концентрации напряжений и масштабного эф­фекта.

Нетрудно установить, что при применении как стали 45, так и стали 40X коэффициенты запаса по текучести выше, чем по устало­стному разрушению (

для стержня из стали 45 и
для стержня из стали 40X), и, следовательно, ра­счетными являются коэффициенты запаса по усталостному разрушению.

Пример 2.15.

Определить коэффициент запаса прочности клапанной пружины, изготовленной из хромованадиевой проволоки (

;
;
;
;
). Размеры пружины: средний диаметр
, диаметр проволоки
, число рабочих витков
. Предварительная осадка пружины
, наибольший ход клапана
.

Решение. Максимальные (расчетные) напряжения в поперечном сечении витка определяются по формулам:

Осадка пружины определяется по формуле

(Здесь заменено обозначение числа рабочих витков пружины – принято

вместо
):

Из формул для

и
получаем

Определяем минимальное напряжение цикла, т. е. величину

при закрытом клапане: