Смекни!
smekni.com

Расчет разветвленной цепи синусоидального тока (стр. 1 из 2)

Федеральное агентство образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ

(ТУСУР)

Курсовая работа

«Расчет разветвленной цепи

синусоидального тока»

По дисциплине

«Общая электротехника и электроника»

Авторы учебно-методического пособия:

В.М. Дмитриев, Н.В. Кобрина, Н.П. Фикс, В.И. Хатников

Томск 2000

Вариант №15

Выполнил студент группы

«» 2008 г.

2008

Задание на курсовую работу.

Расчет разветвленной цепи синусоидального тока.

1. Cчитая, что индуктивная связь между катушками отсутствует:

1.1 составить систему уравнений в символической форме по методу контурных токов;

1.2 преобразовать схему до двух контуров;

1.3 в преобразованной схеме рассчитать токи по методу узловых потенциалов;

1.4 рассчитать ток в третьей ветви схемы (в ветви, обозначения компонентов которой имеют индекс 3) методом эквивалентного генератора и записать его мгновенное значение;

1.5 на одной координатной плоскости построить графики

и
или
;

1.6 рассчитать показание ваттметра;

1.7 составить баланс активных и реактивных мощностей;

1.8 определить погрешность расчета;

1.9 построить лучевую диаграмму токов и топографическую диаграмму напряжений для преобразованной схемы.

2. С учетом взаимной индуктивности для исходной схемы составить систему уравнений по законам Кирхгофа для мгновенных значений и в комплексной форме.

3. Выполнить развязку индуктивной связи и привести эквивалентную схему замещения.

Указания. Сопротивление R в расчетных схемах принять равным 10 Ом. При расчете принять, что

,
,
,
,
,
. Начальную фазу ЭДС
принять равной нулю, а начальные фазы ЭДС
и
— значениям
из таблицы.
, В
, В
, В
, град.
, Ом
, Ом
, Ом
, Ом
, Ом
, Ом
25 50 75 30 15 20 25 15 20 10
,
, Гн
, Гн
, Гн
, мкФ
, мкФ
, мкФ
200 0,1 0,1 0,1 200 400 200

1. Считая, что индуктивная связь между катушками отсутствует:

1.1 Составим систему уравнений в символической форме по методу контурных токов.

Предварительно произвольно выберем направление токов в ветвях и направления контурных токов, с которыми совпадает направление обхода контуров. Таким образом по второму закону Кирхгофа имеем систему из трех уравнений:

1.2 Преобразуем схему до двух контуров.

Заменим две параллельных ветви R и jXL5 одной эквивалентной с сопротивлением R' и jXLсоединенных последовательно. Где ZMN – полное сопротивление этого участка.

ZMN =

= R' + jXL

Таким образом мы получим два контура.

И по второму закону Кирхгофа составим два уравнения:

1.3 В преобразованной схеме рассчитаем токи по методу узловых потенциалов.

Примем φD = 0, тогда мгновенные значения э.д.с имеют вид:

;
;

где

;
.

Затем определим модули реактивных сопротивлений элементов цепи:

;

;

;

;

.

Определим эквивалентное сопротивление участка MN:

ZMN =

Т.е. R' = 7,93 Ом; XL = 4 Ом.

Так как цепь имеет два узла, то остается одно уравнение по методу двух узлов:

, где g1, g2, g3 – проводимости ветвей.

Рассчитаем проводимости каждой из ветвей:

Считаем E1 = E1 = 25 (В);

Определим токи в каждой из ветвей:

Произведем проверку, применив первый закон Кирхгофа для узла C:

I3 = I1 + I2 = – 0,57 – j 0,68 +1,17 + j 1,65 = 0,6 + j 0,97

Токи совпадают, следовательно, расчет произведен верно.

1.4 Рассчитаем ток в третьей ветви схемы методом эквивалентного генератора.

Определим напряжение холостого хода относительно зажимов 1-1’

где

Сначала определим внутреннее входное сопротивление:

Затем определим ток в третьей ветви:

Значение тока I3 совпадает со значением тока при расчете методом узловых потенциалов, что еще раз доказывает верность расчетов.

1.5 На одной координатной плоскости построим графики i3(t) и e2(t).

;