Квазічастинки в кристалах
Фонони
Між атомами існують пружні сили, що не дозволяють атомам відділятись або наближатись ближче деякого rкрит. Однак, при кімнатних температурах атоми здійснюють коливання навколо положення рівноваги; таким чином, в ґратці постійно присутній коливальний рух, а кожний атом можна розглядати як маятник, що здійснює рівномірні коливання навколо точки рівноваги. Відміна від класичного маятника заключається в тому, що атом — це «квантовий маятник». Справа в тому, що дійсно енергія атому може змінюватись тільки порціями — квантами, з енергією, де — це частота поглинутого або випромененого кванту. При кімнатній температурі величина близька до kT — повної енергії атома, що коливається. При зниженні температури, здавалося б, амплітуда коливань повинна прямувати до нуля. Однак, сучасні дослідження показують, що атоми і при Т = 0K будуть здійснювати коливання. Це «нульові коливання атомів». Вони не зникають ніколи.
Пружні сили, що примушують атоми коливатись, можна уявити собі як пружини, які з'єднують атоми. Якщо один із атомів одержить добавку енергії , говорять, що проходить збудження атома. Додаткові коливання будуть передаватись через пружні зв'язки — пружинки до сусідніх атомів. Збудження буде поширюватись в кристалі у вигляді пружної хвилі.
Однак, за законами квантової механіки збудження атомів будуть передавати енергію порціями квантами. Така порція збудження, що поширюється кристалом, називається квазічастинкою, у випадку пружних коливань - фононом. Фонон — квант збудження кристалічної ґратки. Кількість фононів зростає з ростом температури. Фонони, рухаючись кристалом, стикаються один з одним, з електронами, з дефектами кристалічної ґратки.
Електрони
Розглянемо рух електронів в металі при кімнатній температурі. Основний вид руху хаотично-тепловий. При цьому середня швидкість υ = 107 см/c. Цей рух нагадує броунівський рух молекул газу чи рідини. Багато разів за секунду електрон змінює напрямок руху, його енергія і імпульс змінюються при цьому через взаємодію з атомами, тобто з фононами і з іншими електронами. При наявності різниці потенціалів характер руху дещо зміниться: електрони, що хаотично рухалися, набувають направленого руху в напрямку позитивного (вищого) потенціалу. Картину можна уявити як хаотичний рух людей в натовпі, який повільно пересувається в який-небудь бік.
Теорія Гінзбурга-Ландау
Побудована в 1950 теорія Гінзбурга-Ландау описує надпровідність феноменологічно, за допомогою параметру порядку, який пізніше зв'язали з хвильовою функцією куперівських пар. Теорія дозволила успішно аналізувати поведінку надпровідника в магнітному полі.
Теорія БКШ
Фізики напружено працювали над створенням теорії надпровідності і приблизно за 50 років з 1911 до 1957 року загальні риси теорії були сформовані. Спочатку, в 50-х роках виникла феноменологічна теорія надпровідності (див. рівняння Гінзбурга-Ландау), яка успішно пояснювала поведінку напдровідників у магнітних полях, а в 1957 році Джон Бардін, Леон Ніл Купер й Джон Роберт Шріффер запропонували мікроскопічну теорію надпровідності, за яку в 1972 році одержали Нобелівську премію.
Основною ідеєю теорії БКШ є те, що електрони провідності (вільні носії заряду) при певних температурах з'єднуються в пари, що називаються «куперівськими». Зв'язок в таких парах достатньо сильний, і пари, рухаючись по ґратці, допомагають один одному уникнути розсіювання. Притягування між від'ємно зарядженими електронами важко уявити, оскільки загальновідоме Кулонівське відштовхування між однойменно зарядженими частками. Однак такі відштовхування безумовно виникають між ізольованими електронами. В ґратці при низьких температурах, коли коливання атомів у вузлах практично зупинилось, може спостерігатись інше явище.
Під час руху електрона вздовж кристалічної ґратки виникає електростатичне відштовхування між ним та від'ємними електронними оболонками атомів. Ці оболонки деформуються, віддаляючись від електрону, який вільно рухається. Можна сказати, що атоми поляризуються. Тобто біля розглядуваного електрону формується позитивний заряд. Цей позитивний заряд буде рухатись — супроводжувати збуджуючий електрон. До сформованого таким чином позитивного просторового заряду притягуватиметься якийсь інший електрон, що теж буде рухатись синхронно з позитивним зарядом, а, отже, синхронно з першим електроном. Утворилася так звана «куперівська пара» електронів. Другий електрон в розглянутій парі сам є збудником іншого позитивного заряду в тій області, де він рухається. Електронний газ (так іноді називають вільні електрони в металі) при досягненні надпровідності перетворюється в «куперівську рідину».
Розглянуте явище на квантовому рівні можна описати так: електрони взаємодіють з ґраткою і приводять її в збуджений стан. Зворотній перехід ґратки в нормальний стан супроводжується випромінюванням енергії, що поглинається іншими електронами. Або: перший електрон випромінює фонон, рухаючись в ґратці. Другий електрон цей фонон поглинає. Обмін фононами і створює притягування між електронами. Які ж електрони мають здібності об'єднуватися в куперівські пари? Тільки ті, у яких рівні за модулем ( | P1 | = | P2 | ) та протилежні імпульси (P1 = − P2), і у яких протилежні спіни.
Із рівності й протилежності імпульсів одержали, що нова квазічастинка «куперівська пара» має Ркуп. = 0, і спін, рівний нулю. Не слід думати, що в куперівській парі електрони близько розташовані один від одного. Розмір пари досить великий 10-6 м = 1 мкм. Якщо врахувати, що між атомами відстань близько 10
, тобто 1 нм, то одержимо, що між куперівськими електронами близько 1000 атомних відстаней. Таким чином, куперівська пара знаходиться в мікрооб'ємі, що є кубом зі стороною в 1000 атомів. В цьому об'ємі вміщується атомів і стільки ж, а то й більше, електронів. Куперівські пари перекриваються один з одним в межах мікрооб'єму — в межах всього кристалу, так, що поведінка всієї куперіської рідини стає скорельованою. При цьому розсіювання електронів стає неможливим. Припиняється втрата енергії електронами при розсіюванні, а також деформація траєкторій руху.Розсіювання — це не обов'язково пряме зіткнення, це, як правило, відхилення траєкторії під дією яких-небудь об'єктів кристалічної ґратки. Так наприклад, якщо електрони рухаються мимо центру розсіювання в складі пари, або краще сказати в складі «куперівської рідини», то взаємодія електронів з іншими електронами сильніша, ніж взаємодія з центром розсіювання, і електрони обходять центр розсіювання, після чого відновлюють попередню траєкторію руху завдяки взаємодії з іншими електронами. Тобто відбувається рух електронів без розсіювання.
Якщо до такого кристалу прикласти електричне поле, то всі пари електронів отримають один і той же імпульс і почнуть рухатись в одному і тому ж напрямку, з деякою дрейфовою швидкістю. При цьому рух всіх куперівських пар буде строго скорельований. Розсіювання електронів буде відсутнє, тобто опір провідника дорівнюватиме нулю.
Надпровідність – надзвичайно цікаве й деякою мірою загадкове фізичне явище, практичне застосування якого має принести людству незліченні здобутки. Надпровідний струм є бездисипативним, тобто при протіканні постійного струму в надпровіднику не виникають звичайні резистивні втрати. Це причина, завдяки якій використання надпровідних пристроїв виявляється одним з найбільш важливих і перспективних шляхів енергозбереження. Оцінки показують, що застосування надпровідності дозволить зменшити втрати під час генерації, передачі, трансформації та використанні електроенергії з приблизно 30-35% до 1-2%, що є рівнозначним побудові кількох нових потужних електростанцій в Україні.