Смекни!
smekni.com

Тепловой расчет и эксергетический анализ парогенераторов (стр. 1 из 6)

Содержание

Введение

1. Исходные данные

2. Принципиальная схема котельного агрегата

3. Теплотехнический расчет котельного агрегата

3.1 Расчет процесса горения топлива в топке котла

3.2 Расчет процесса горения и ht – диаграмма продуктов сгорания топлива

3.3 Тепловой баланс котельного агрегата

3.4 Упрощенный эксергетический баланс котельного агрегата

4. Тепловой расчет котла – утилизатора

4.1 Выбор типа котла – утилизатора

4.2 Расчет поверхности теплообмена котла – утилизатора

4.3 Термодинамическая эффективность работы котла – утилизатора

4.4 Графическая зависимость по исследовательской задаче

4.5 Термодинамическая эффективность совместной работы котельного агрегата с котлом – утилизатором

5. Схема котла – утилизатора

6. Схема экономайзера

7. Схема воздухоподогревателя

8. Схема горелки

Заключение

Литература


Введение

Наука, изучающая процессы получения и использования теплоты в различных производствах, а также машин и аппаратов, предназначенных для этих целей, называется теплотехникой.

В настоящее время роль теплотехники значительно возросла в связи с необходимостью экономного использования топливно – энергетических ресурсов, решения проблем охраны окружающей среды и создания безотходных технологий.

Принятый Федеральный закон “Об энергосбережении” (№ 28 – ФЗ от 03.04.1996 г.) предусматривает комплекс мер, в том числе по подготовке кадров, направленных на координальное изменение ситуации в области энергоиспользования. В реализации этого закона большая роль отводится специалистам любого технического профиля, чем и объясняется особая актуальность теплотехнической подготовки соответствующих инженерных кадров, в том числе и технологических специальностей.

Оценка потенциала энергосбережения свидетельствует о возможностях российской экономики к 2010 г. сократить потребность в энергоресурсах в результате роста эффективности их использования в размере 350…360 млн.т условного топлива при ожидаемом энергопотреблении на уровне 1050 млн. т у.т..

Нефтеперерабатывающая, нефтехимическая и химическая промышленности являются наиболее энергоемкими отраслями народного хозяйства. В себестоимости производства отдельных видов продукции в этих отраслях промышленности на долю энергетических затрат приходится от 10 до 60 %, например, на переработку 1 т нефти затрачивается 165 – 180 кг условного топлива.

Энергетическое хозяйство НПЗ и НХЗ включает собственно энергетические установки (ТЭЦ, котельные, компрессорные, утилизационные, холодильные, теплонасосные установки и др.), энергетические элементы комбинированных энерго-, химико-технологических систем (ЭХТС), производящих технологическую и энергетическую продукцию.

В данной работе на примере котельного агрегата рассматриваются методы расчета процесса сжигания и расхода топлива, КПД, теплового и эксергетического балансов. Экономия топлива при его сжигании является одной из важнейших задач в решении топливно-энергетической проблемы.

Вопросы экономии топлива и рационального использования теплоты решаются в курсовой работе применением в схеме установки экономайзера, воздухоподогревателя, котла – утилизатора.


1. Исходные данные

28

14 МПа

550 °С

100°С

175 °С

1,20

21 т/ч

Δα=0,25

СО 0,10

CH4 98,00

C2H6 0,40

С3Н8 0,20

N2 1,30

Исследовательская задача

Используя аналитические выражения построить зависимость влияния температуры окружающего воздуха t0 (t0=0…250 °С с шагом 50 °С) на КПД брутто котельного агрегата.


2. Принципиальная схема котельного агрегата [1]

Рисунок 1 – Принципиальная схема котельного агрегата

В котельном агрегате вода подается питательным насосом 1 в подогреватель ( водяной экономайзер) 2, где за счет теплоты дымовых газов (показаны пунктиром) подогревается до температуры кипения

. Из экономайзера вода попадает через барабан 5 и опускные трубы 4 в систему испарительных трубок 3, которые расположены в топке котла. В испарительных трубках в результате подвода теплоты от продуктов горения часть воды превращается в пар. Образовавшаяся пароводяная эмульсия возвращается в барабан 5, где разделяется на сухой насыщенный пар и воду, которая опять возвращается в испарительный контур. Полученный таким образом сухой насыщенный пар из верхней части барабана поступает в пароперегреватель 6, где за счет теплоты горячих дымовых газов перегревается до требуемой температуры перегретого пара
.

Таким образом, процесс получения перегретого пара состоит из трех п последовательных стадий: подогрев воды до температуры кипения, парообразования и е перегрева пара до требуемой температуры. Все эти стадии протекают при постоянном давлении.


3. Теплотехнические расчеты котельного агрегата

3.1 Расчет процесса горения топлива в топке котла

Коэффициент избытка воздуха за установкой

,

Теоретическое количество воздуха, необходимого для полного сгорания

газообразного топлива

,

м3/м3.

Объем трехатомных газов

,

м3/м3.

Теоретический объем азота

,

м3/м3.

Объем избытка воздуха в топочном пространстве

,

м3/м3.

Объем водяных паров

,

м3/м3.

Объемное количество продуктов сгорания, образующихся при сжигании

топлива

,

. м3/м3.

Плотность топливного газа при нормальных условиях

,

кг/м3.

Массовое количество дымовых газов, образующихся при сжигании газообразного топлива

,

кг/м3.

Определим калориметрическую температуру горения, для чего вычислим энтальпию продуктов сгорания при температуре 1400 и 2000 °С

,

кДж/кг,

кДж/кг.

где

,
,
,
- Средние объемные изобарные теплоемкости углекислого газа, азота, водяных паров и воздуха;

Энтальпию продуктов сгорания

при калориметрической температуре определяем из уравнения теплового баланса топки, для двух случаев