Смекни!
smekni.com

Методы математического анализа и расчёта электронных схем (стр. 2 из 2)


Если выполняются условия 2.13 - 2.14, то схема переходит к состоянию n=1 (открылся диод, контакта нет).

Состояние n=1 (диод открыт, контакта нет). Данное состояние описывается системой дифференциальных уравнений 2.15. Условиями перехода от этого состояния к другим являются неравенства 2.16 и 2.17. Схема замещения для этого состояния показана на рис.2.4.



Условие закрытия диода:



Схема замещения для состояния n=0.


Схема замещения для состояния n=1.


Условие груза лежащего на опоре:


Если выполняются условия 2.16 и 2.17, тогда схема переходит к состоянию n=2.

Состояние n=2 (диод заперт, контакт есть). Данное состояние описывается уравнением 2.18. Схема замещения для данного состояния показана на рис. 2.3.

IL = J (2.18.)

Если система пришла в данное состояние, то ни в какое другое состояние она уже перейти не может, то есть переход системы в данное состояние означает завершение её работы.

Состояние n=3 (диод открыт, контакт есть). Данное состояние описывается уравнением 2.19. Условиями перехода от этого состояния к другим будут неравенства 2.14 и 2.16. Схема замещения для данного состояния показана на рис.2.4.


Получены системы дифференциальных уравнений (СДУ) для всех состояний исследуемой системы. Перед началом численного интегрирования переменным состояния, входящим в эти СДУ, присваивали начальные значения переменных состояния из предыдущего состояния.


3. КОРРЕКЦИЯ ТОЧЕК СТЫКОВКИ

Точный момент переключения из одного состояния в другое можно определить достижением точного равенства в условиях переключения. Однако при численном интегрировании условия переключения проверяются не в каждый момент времени, а дискретно, то есть с каким - то шагом интегрирования. Поэтому добиться точного равенства в условиях переключения практически невозможно. Для уменьшения ошибки определения момента переключения и, соответственно, ошибки определения начальных условий для следующего состояния можно уменьшить шаг интегрирования. Однако, это приводит к возрастанию времени расчёта и возрастанию погрешности округления.

В данной работе использован следующий подход. Пусть условие переключения выглядит следующим образом:

Р £ 0,

где Р - это критерий переключения;

Пусть на к - ом шаге интегрирования Рк > 0, а на к +1 - ом шаге Рк < 0. В этом случае очевидно, что точный момент переключения находится между рассматриваемыми моментами времени tк и tк+1:

tк = k × h (3.1.)

tк+1 = (k + 1) × h (3.2.)

где h - это шаг интегрирования.

Предположим, что параметр Р изменяется линейно (рис.3.1), из подобия треугольников находим:

t* = tк + mh (3.3.)

где (3.4.)

m - коэффициент деления шага интегрирования.

Аналогично должны быть уменьшены приращения, полученные всеми переменными состояния на к+1 - ом шаге интегрирования:


График определения момента переключения.



(3.5.)


- значение i - ой переменной состояния в момент времени tк;

DXi - приращение i - ой переменной состояния на k+1 - ом шаге интегрирования;

- точное значение i - ой переменной состояния в момент переключения.

Используя данный подход, удалось существенно снизить погрешность определения начальных условий, причём время расчёта практически не увеличилось.


4. РЕАЛИЗАЦИЯ ЧИСЛЕННЫХ ВЫЧИСЛЕНИЙ И ПОЛУЧЕНИЕ РЕЗУЛЬТАТОВ

Для численного интегрирования систем дифференциальных уравнений полученных в пункте 2 данной работы использовали метод Кутта-Мерсона. Данный метод применяется при анализе цепей с вентильными элементами, когда вентильные элементы рассматриваются как идеальные, а исследуемая электромеханическая система содержит такие элементы.

Нижеприведенная программа рассчитывает ток, магнитную индукцию, высоту груза над опорой и скорости ее перемещения. Также данная программа строит графики зависимостей этих величин от времени. При запуске программы ЭВМ предлагает пользователю выбрать рассчитываемую величину и указать диапазон значений в пределах которых будет изменяться выбранная величина. По окончанию работы программа выводит график зависимости выбранной величины от времени. Программу следует запускать столько раз, сколько зависимостей требуется получить.

Графики тока, индукции, скорости и высоты в зависимости от времени приведены на рис. 4.1.- 4.4. Также с помощью данной программы построили графики зависимости скорости в момент удара об опору от Н и Хо рис.4.5. и 4.6. и определили допустимых значений Н и Хо на уровне 1/4V. Получили диапазоны: по Н – от 18,2 до 22,4 мм; по Хо – от 13,2 до 17,7 мм.

Текст программы представлен ниже. Блок схема изображена на рис.4.7. Основные переменные программы и их назначение приведены в таблице 4.1.

Таблица 4.1.

Таблица идентификаторов.

Имя переменной Назначение переменной в программе
Cont, VD Логические переменные.
P, i, j, egavga, mode Вспомогательные целочисленные переменные.
dpr, z, rr, w,hp, hk, bk, d, m, R Исходные параметры демпфера заданные в техническом задании.
k1,k2,k3,k4,k5,k11,k22,k33,k44,k55,kk1,kk2,kk3,kk4,kk5,kv,kv2,kv3,kv4,kv5 Переменные коэффициенты численного интегрирования.
Ymax, Ymin, Vmax, Vmin, Xmin, Xmax, Fmin, Fmax, bmax, bmin, hmax, hmin Переменные обозначающие диапазон изменения соответствующей величины.
h Шаг интегрирования.
IL, Y, V,X Динамические переменные состояния ЭМД.
Step Момент интегрирования.
Go, gm, g1 Магнитные проводимости.

Блок-схема программы.



ЗАКЛЮЧЕНИЕ


В данной курсовой работе был исследован электромагнитный демпфера. Были получены зависимости от времени высоты и скорости груза, тока в обмотке и магнитной индукции в сердечнике. При заданных параметрах электромеханической системы достигается удовлетворительное демпфирование, то есть скорость в момент удара массы об опору не превышает ¼ от посадочной скорости массы без демпфера. Удовлетворительное демпфирование достигается лишь в небольшом диапазоне значений Н и Хо, близких к заданным.


СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Методические указания к выполнению курсовой работы по курсу "Математическое моделирование устройств промышленной электроники на ЭВМ".-ТПИ,1995;

2. Конспект лекций по "Методам математического анализа и расчёта электронных схем".