2. Электроизмерительные приборы с магнитоэлектрическим измерительным механизмом.
Магнитоэлектрический механизм содержит постоянный магнит и катушку с током. Рассмотрим работу магнитоэлектрического измерительного механизма на примере конструкции с внутрирамочным магнитом(рис.).
Его магнитная система состоит из постоянного магнита 3 и замкнутого кольца 2 из магнитомягкого ферромагнитного материала. В рабочем зазоре между ними образуется радиальное магнитное поле. Подвижная катушка 1, выполненная из тонкого изолированного провода, намотанного на алюминиевыйкаркас, помещена в рабочем зазоре и укреплена на растяжках. Она может свободно поворачиваться вокруг своей оси. Концы обмотки электрически соединены с растяжками, по которым ток поступает в катушку. При наличии в обмотке постоянного тока I на активную сторону витков w обмотки длиной l, находящуюся в равномерном магнитном поле зазора с магнитной индукцией В0, действует сила F, которая, согласно з-ну Ампера, равна F=B0*l*I*w. Под действием пары таких сил, действующих на обе активные стороны обмотки, создается вращающий момент Мвр= В0*l*b*w* I=B0*S*w*I=Y0*I. S – площадь обмотки, равная произведению длины l на ширину b; Y0=B0*S*w – постоянная прибора, равная максимальному потокосцеплению катушки. Из последнего выражения видно, что вращающий момент пропорционален току. Под действием Мвр подвижная часть механизма вместе с указателем поворачивается на некоторый угол α , который пропорционален току I: α=Si*I, где Si=Y0/k – чувствительность ИМ по току, величина постоянная, не зависящая от тока. Магнитоэлектрические приборы, в которых используются магнитоэлектрические механизмы, применяют для измерения постоянных токов и напряжений, а также в качестве измерителей сопротивления и гальванометров.
Билет №10
1. Конденсаторный асинхронный двигатель.
имеет на статоре 2 обмотки, которые обе являются рабочими, и в одну из них включается емкость Ср, значение которой рассчитывается так, что при номинальной нагрузке существует только вращающееся поле прямой последовательности. Обе обмотки при этом имеют фазные зоны по 90 эл.град и сдвинуты друг относительно друга в пространстве также на 90. Мощность обеих обмоток при Р=Рн одинакова, но их числа витков, токи и напряжения различны. КД представляет собой 2-фазный Д, который подключен посредством конденсатора Ср к однофазной сети и при Р=Рн имеет симметричную нагрузку фаз. Емкость Ср, подобранная по рабочему режиму, недостаточна для получения высокого пускового момента. Поэтому в необходимых случаях параллельно Ср на время пуска включается добавочная, пусковая мощность Сп. Использование материалов в КД и его КПД значительно выше, чем в 1-фазных двигателях с пусковой обмоткой, и почти такие же, как у 3-фазных Д. Коэффициент мощности КД ввиду наличия конденсатора выше, чем у 3-фазных Д равной мощности. Для схемы включения КАД при заданном напряжении сети U емкость рабочего конденсатора, необходимая для получения кругового вращающего поля, Ф: Ср=Ia*cosja/(Ufk), где jа - угол фазового сдвига между током Ia и напряжением U при круговом вращающем поле; k - коэффициент трансформации. Емкость обеспечивает получение в Д кругового вращающегося поля только при k=tgja. Обычно КАД рассчитывают так, чтобы круговое вращающее поле соответствовало номинальной или близкой к ней нагрузке. Ср обратно пропорциональна напряжению сети, т.е. чем выше напряжение, тем меньшей емкости требуется конденсатор. КАД используются при повышенных условиях к пусковому моменту.
2. Астатические электроизмерительные приборы.
Билет №11
1.Однофазный асинхронный двигатель с экра
нированными полюсами.имеет на статоре явно выраженные полюсы с однофазной обмоткой и ротор с обмоткой в виде беличьей клетки. Часть наконечника каждого полюса охвачена (экранирована) короткозамкнутым витком. Ток статора I1 создает в неэкранированной и экранированной частях полюса пульсирующие потоки Ф''1 и Ф'1. Поток Ф''1 индуктирует в кз витке ЭДС Ек, которая отстает на угол jк<90. Кз виток имеет определенное активное и индуктивное сопротивления, и его ток Iк отстает от ЭДС Ек на угол jк<90. Ток Iк создает поток Фк, и результирующий поток экранированной части полюса Фэ=Ф'1+Фк сдвинут по фазе относительно потока неэкранированной части полюса Ф'1 на некоторый угол y. Т.к. потоки Ф'1 и Фэ также сдвинуты в пространстве, то возникает вращающее поле. Это поле не круговое, а элиптическое, т.е. содержит также составляющую обратной последовательности, т.к. потоки Ф1 и Фэ не равны по значению и сдвинуты в пространстве и во времени на достаточно большие углы. Тем не менее, при пуске создается вращающий момент Мп=(0.2-0.5)Мн. Маг поле простейшего экранированного Д содержит значительную третью пространственную гармонику, которая вызывает большой провал кривой момента. Для улучшения формы поля применяют следующие меры: между наконечниками соседних полюсов устанавливают магнитные шунты из листовой стали, увеличивают зазор под неэкранированной частью полюса, на каждом полюсе помещают 2-3 кз витка разной ширины. Вследствие больших потерь в кз витке Д имеет низкий КПД (до 25-40%). ЭД простейшей конструкции строятся на мощности от долей вата до 20-30 Вт, а при усовершенствованной конструкции - до 300 Вт. Область примения - настольные вентиляторы, магнитофоны и пр.
2. Магнитный пускатель.
Магнитные пускатели осуществляют пуск, остановку и защиту двигателей от перегрузки. Они коммутируют номинальные токи и токи перегрузки. Пределы номинальных токов пускателей от 4 до 2500 А. Номинальные напряжения катушек пускателей постоянного тока изменяется от 24 до 440 В. А у пускателей переменного тока – от36 до 660 В. Механическая износостойкость определяет способность пускателя выполнять определенное число операций включение – отключение без тока в цепи главных контактов при наибольшей допустимой частоте циклов. Существуют пять классов механической износостойкости. Коммутационная износостойкость - это способность аппарата выполнять определенное число операций коммутации тока контактами при заданных условиях в цепи. Характерные величины этого вида износостойкости в циклах – 103, 104, 105 и 106. Конструкция магнитного пускателя (очень примерно своими словами). Магнитный пускатель состоит катушки с сердечником (представляет собой электромагнит), якоря, контактов. При подачи напряжения на катушку, создается магнитное поле, которое притягивает к сердечнику якорь. Механически соединенные с якорем подвижные части замыкающихся контактов тоже приходят в движение и замыкаются с неподвижными (если имеются вспомогательные размыкающие контакты, то они размыкаются). Отличительной особенностью пускателей переменного тока является то, что сердечник и якорь выполнены шихтованными из электротехнической стали. И в торце сердечника находится накоротко замкнутое кольцо. Роль которого удержать якорь в притянутом состоянии (поддерживать магнитное поле) в момент, когда переменное напряжение достигает нулевого значения.
Билет №12
1. Асинхронный электродвигатель с полым немагнитным ротором.
Рис в лекции
Для повышения быстродействия исполнительного двигателя были созданы асинхронные исполнительные двигатели с полым немагнитным ротором. Полый немагнитный ротор представляет собой тонкостенный алюминиевый стакан, закрепленный на валу посредством втулки. Такой ротор имеет повышенное сопротивление r2, небольшую массу, а следовательно, малое значение электромеханической постоянной времени. Двигатель имеет два статора — внешний с обмоткой и внутренний без обмотки, расположенный внутри полого стакана ротора. Внутренний статор необходим для уменьшения магнитного сопротивления основному магнитному потоку двигателя. Возможна конструкция двигателя, когда обмотка статора расположена на внутреннем статоре. По сравнению с исполнительными двигателями с короткозамкнутой обмоткой ротора, двигатели с полым немагнитным ротором имеют большие габаритные размеры и невысокий КПД. Это объясняется тем, что между наружным и внутренним статорами имеется значительный немагнитный промежуток, в котором замыкается основной магнитный поток двигателя. Немагнитный промежуток складывается из толщины алюминиевого стакана и двух воздушных зазоров между поверхностями ротора и статоров. Увеличение немагнитного промежутка на пути основного магнитного потока способствует росту намагничивающего тока, а следовательно, снижению коэффициента мощности двигателя и КПД. Намагничивающий ток достигает 80—90% номинального тока в цепи статора. Достоинства асинхронных двигателей с полым немагнитным ротором: высокое быстродействие, большой диапазон регулирования частоты вращения, стабильность характеристик, малошумность в работе. Сравнение технических данных асинхронных исполнительных двигателей различной конструкции показывает, что у двигателей с кз обмоткой ротора благодаря «сквозной» конструкции и уменьшенному диаметру ротора постоянная времени Тeм меньше, чем у двигателей с полым немагнитным ротором (исключение составляют двигатели с полым немагнитным ротором, рассчитанные на частоту переменного тока 50 Гц). Относительное напряжение трогания Uтр/Uуном у двигателей с короткозамкнутой обмоткой ротора в несколько раз больше, чем у двигателей с полым немагнитным ротором, так как в двигателях с короткозамкнутым ротором возникает сила одностороннего магнитного притяжения ферромагнитного сердечника ротора к сердечнику статора. Причина возникновения этой силы — неравномерный воздушный зазор между статором и ротором. В двигателях «сквозной» конструкции при одностороннем зазоре, не превышающем 0.05 мм, даже незначительная неравномерность зазора вызывает заметные силы одностороннего магнитного притяжения, влияющие на напряжение трогания двигателя. По своему внешнему виду и габаритам эти двигатели не отличаются от синхронного реактивного Д типа СД-54.