Смекни!
smekni.com

Сжижение газов 2 (стр. 4 из 8)

Так как температура инверсии эффекта Джоуля – Томсона Ti для гелия очень низкая (около 50 К), то он должен быть предварительно охлажден до температуры ниже Ti. в описываемой машине гелий охлаждается жидким водородом до температуры 14,5 К. Работу машины иллюстрирует схема, представленная на рис. 5

Гелий, сжатый компрессором до давления 30 атм, поступает в машину двумя потоками по двум трубкам, соединяющимся вместе в точке О. обе эти трубы являются частями двух теплообменников – І и ІІ. В теплообменнике І гелий охлаждается встречным потоком газообразного гелия, испаряющегося из приемника fи прошедшего уже через теплообменник ІV. В теплообменнике ІІ вторая часть сжатого газа охлаждается встречным потоком газообразного водорода, испаряющегося из ванны с жидким водородом Н.

Соединившись в точке О, оба потока вместе поступают в змеевик ІІІ, проходящий через жидководородную ванну Н, и принимает ее температуру (14,5 К). пройдя через эту ванну, гелий попадает в теплообменник ІV, где он дополнительно охлаждается испаряющимся из приемника гелием до температуры 5,8 К. При такой температуре гелий подвергается дросселированию через вентиль V и сжижается.

Весь аппарат помещается в вакуумный чехол, обеспечивающий надежную тепловую изоляцию.

Приведенные выше цифры для температур в разных частях установки относятся, конечно, к установившемуся режиму работы. Во время разгона машины температура гелия перед дросселированием выше, чем 5,8 К (но, конечно, не выше 14,5 К), так как в это время в приемнике еще нет жидкого гелия. Машина обладает проводимостью около 10 литров жидкого гелия в час, что является сравнительно высокой цифрой.

§5. Сжижение газов методом адиабатного расширения в детандерах (метод Клода)

Применение детандеров, в которых газ охлаждается при адиабатном расширении с совершением внешней работы, повышает, как мы уже видели, эффективность ожижительных машин. В машинах для сжижения гелия использование расширения в детандерах позволяет, кроме того, отказаться от предварительного охлаждения газа жидким водородом – веществом, легко воспламеняющимся и взрывоопасным. Обе эти причины привели к широкому использованию детандерных машин.

Впервые такая машина была построена Клодом (1902 г.) для сжижения воздуха. Схема машины представлена на рис. 6.

рис. 6

Газ подвергается изотермическому сжатию в компрессоре К, откуда он поступает в теплообменник Е1. Здесь он разделяется на два потока (в точке О). первый идет через теплообменник Е2 к дроссельному вентилю и подвергается дросселированию с охлаждением за счет эффекта Джоуля – Томсона; второй поток (на его долю приходится 80 % газа) поступает в детандер, расширяется в нем, совершая работу, и за этот счет охлаждается. Из детандера охлажденный газ возвращается в теплообменник Е1, охлаждая встречную очередную порцию сжатого газа. К нему в точке О' присоединяется и тот газ, который охладился в результате дросселирования. До этого он, проходя через теплообменник Е2, тоже охлаждал встречный газовый поток.

Из приведенного краткого описания видно ,что охлаждение в детандере используется для предварительного охлаждения перед дросселированием.

В первой машине Клода детандер представлял собой поршневую машину. Работу, которую в ней совершает сжатый газ, можно использовать для облегчения работы компрессора, для принудительной смазки машины и т.д.

Условия, характерные для машины Клода (ожижающей воздух), примерно таковы: давление на выходе компрессора 40 атм, температура на входе в детандер (т.е. после охлаждения в теплообменник Е1) 200 К; температура после расширения в детандере 110 К при давлении в 1 атм.

Существует много различных по конструкции машин типа Клода для сжижения воздуха. Одной из самых интересных является машина П. Л. Капицы, в которой поршневой детандер заменен турбиной (турбодетандер). Другой возможностью этой машины является низкое давление, по которым газ поступает в детандер. Оно равно лишь 6,5 атм. Зато в этой машине почти весь газ (а не 80%, как в машине Клода) проходит через детандер. В результате расширения в турбодетандере газ охлаждается до 86 К и сжижает ту часть газа, которая миновала детандер. Получившаяся жидкость находится под повышенным давлением и дросселируется через соответствующий вентиль к боле низкому давлению.

Расширение в детандерах (исключительно поршневых) используется также в машинах для сжижения водорода и гелия. Первая детандерная машина для сжижения гелия также была построена П. Л. Капицей (1934 г). Она была рассчитана на предварительное охлаждение гелия не жидким водородом, а жидким азотом. Недостающее охлаждение создавалось расширением в детандере. Самое ожижение газа производилось дросселированием.

При использовании детандеров в гелиевых ожижительных машинах возникает острая проблема смазки, так как при тех низких температурах, которые создаются в таких машинах, все смазочные средства твердеют. В детандере П. Л. Капицы смазкой служит сам гелий, для которого между поршнем и цилиндром оставлялся зазор около 0,05 мм. Впоследствии Коллинз (1947 г) построил детандерную машину для сжижения гелия, усовершенствовав детандер П. Л. Капицы (зазор в детандере Коллинза не превышает 10 микрон). Машина Коллинза снабжен двухступенчатым детандером и может работать без предварительного охлаждения гелия. Производительность машины сравнительно велика – до 10 литров в час, а с предварительным охлаждением жидким азотом – до 30 литров в час.

§6. Некоторые свойства сжиженных газов

Сжиженные газы, о которых шла речь выше , - азот, кислород, водород и гелий, - позволяют получить низкие температуры в интервалах температур, простирающихся от температур их кипения под атмосферным давлением до температур их отвердения, до которого их можно довести, откачивая пары над ними (исключение составляет гелий, не твердеющий ни при каком охлаждении). В твердом состоянии эти газы могут служить хладоагентами, так как трудно создать надежный тепловой контакт между ними и охлажденными телами.

N2 O2 H2 He4
Температура кипения под давлением 1атм, К 77,32 90,12 20,39 4,21
Температура отвердения, К 63,14 54,36 14,04 Не твердеет
Упругость пара при температуре отвердения, мбар 129 1,50 75,8 -
Плотность при температуре кипения при 1 атм, кг/м3 800 1150 71 125
Теплота испарения при температуре кипения при 1 атм, кДж/кг 200 212,8 456,2 23
Плотность в твердом состоянии, кг/м3 1026 1425 80 -

В таблице приведены данные, показывающие, какие именно интервалы температур перекрываются этими сжиженными газами. Там же приведены и некоторые другие сведения о них.

Из таблицы видно, что сжиженные газы позволяют непосредственно получать низкие температуры в следующих интервалах:

63,14 – 77,32 К – жидкий азот,

54,36 – 90,12 К – жидкий водород,

14,04 – 20,39 К – жидкий водород,

0,7 – 4,21 К – жидкий гелий (0,7 К – наинизшая температура, достигаемая откачкой паров жидкого гелия Не4.)

С помощью этих сжиженных газов могут быть получены и любые промежуточные температуры, хотя это требует применения особых, иногда весьма сложных устройств.

Устройства эти, служащие для проведения исследований как внутри, так и вне приведенных выше температурных интервалов, называются криостатами. Они позволяют получить не только нужную температуру, но и поддерживать ее во время исследования постоянной. Они снабжаются даже тем или иным термометром для измерения температуры.

На рис. 7 показан простейший криостат для исследований в области гелиевых температур.

Он состоит из двух, помещенных один на другой сосудов Дьюара – внутреннего А и внешнего В. первый из них рис.7

наполняется жидким гелием, второй – жидким азотом. Такое азотное «окружение» необходимо для уменьшения подвода тепла извне, что позволяет замедлить испарение и продлить тем самым «срок службы» налитого жидкого гелия. Внутренний сосуд вакуумно плотно закрывается крышкой (уплотнение обеспечивается резиновой манжетой m, охватывающей крышку и сосуд). Трубка N в крышке служит для откачки паров гелия, что позволяет изменять его температуру. Поддерживая упругость паров постоянной (с помощью особого устройства вне криостата, не показанного на рисунке), можно поддерживать и температуру жидкости постоянной. Манометр (также не показанный на рисунке), присоединенный к криостату через трубку М, служит для измерения упругости паров, а по ней судят о температуре жидкости. Исследуемое тело, помещаемое в жидкий гелий, крепится к крышке тонкостенными трубками из материала ,плохо проводящего тепло.

§8. Сверхнизкие температуры

Данные, приведенные в таблице ,показывают, что сжиженные газы позволяют получить температуры вплоть до 4,21 К (жидкий гелий).

Если заставить жидкий гелий кипеть под пониженным давлением (для этого нужно откачивать пары над ним), то его температуру можно понизить примерно до 1К. Рекордно низкая температура, полученная таким образом, равна 0,69 К. дальнейшее понижение температуры жидкого гелия откачкой его паров оказывается практически невозможным, так как упругость паров гелия в этой области температур становится очень малой. Если при 0,7 К упругость паров гелия равна 2,2*10-3 мм рт. ст., то при 0,5 К она становится равной 1,6*10-5, а при 0,3 К – 3,2 *10-10 мм рт. ст. Имея в виду легкость, с какой испаряется жидкий гелий (теплота испарения 23 кДж/кг), ясно ,что насосы не могут «успеть» откачивать пары до столь малых давлений.