Смекни!
smekni.com

Пластинчатые теплообменники 2 (стр. 7 из 8)

3. Проверяем скорости движения кислоты и воды в штуцерах при площади проходного сечения штуцера при Dшт = 150 мм и fD = 0,0176 м2:

м/с

м/с

4. Так как скорость воды в штуцере больше допустимой (2,79>2,5 м/с), то рассчитаем местное гидравлическое сопротивление водяного штуцера, приняв ξшт = 1,5:

кПа (580 кгс/м2)

5. Общее гидравлическое сопротивление теплообменника составит:

а) для тракта движения кислоты

кПа (10130 кгс/м2);

б) для тракта движения воды

кПа (11380 кгс/м2).

6. Сопоставим заданные располагаемые напоры с расчетными гидравлическими сопротивлениями. При этом должно соблюдаться условие:


Для тракта движения кислоты получим

.

Аналогично для тракта движения воды

.

Как видим, действительные гидравлические сопротивления находятся в пределах располагаемых значений.

7. Подсчитаем мощность, необходимую на преодоление гидравлических сопротивлений при прокачивании кислоты и воды через теплообменник:

Вт = 7,26 кВт

Вт = 7,4 кВт,

где η1 и η2 – коэффициенты полезного действия насосов выбраны по каталогу-справочнику «Насосы» в соответствии с расходами сред:

насос КНЗ-8/32 η1 = 0,372

насос 6К-8б η2 = 0,74.

Пример 2.

Произвести проектный расчет пластинчатого разборного аппарата для обогрева минерального масла конденсирующимся водяным паром при следующих исходных данных:

Располагаемый расход пара G1 = 1,39 кг/с
Начальная температура пара
= 143 °С
Температура конденсации
°С
Начальная температура масла
°С
Конечная температура масла
°С
Давление пара в конденсаторе Р1 = 300 кПа(30000 кгс/м2)
Давление на стороне масла Р2 = 600 кПа(60000 кгс/м2)
Располагаемый напор на преодоление гидравлического сопротивления по стороне масла
кПа(10000 кгс/м2)
Удельная теплота фазового превращения r = 2160000 Дж/кг
Плотность пара
кг/м3
Плотность конденсата
кг/м3
Плотность масла
кг/м3
Удельная теплоемкость пара с1 = 2090 Дж/(кг·°С)
Удельная теплоемкость конденсата ск = 4187 Дж/(кг·°С)
Удельная теплоемкость масла с2 = 1990 Дж/(кг·°С)
Теплопроводность конденсата λк = 0,685 Вт/(м·°С)
Теплопроводность масла λ2 = 0,127 Вт/(м·°С)
Кинематическая вязкость конденсата νк = 0,228·10–6 м2
Кинематическая вязкость масла ν2 = 24,4·10–6 м2
Критерий Прандтля для конденсата Prк = 1,33
Критерий Прандтля для масла при средней температуре Pr2 = 388
Критерий Прандтля при температуре стенки Prст = 121
Аппарат намечено проектировать на базе пластин типа ПР-0,5М из листовой стали Х18Н10Т толщиной 1 мм с гофрами в елочку и следующими данными:
Поверхность теплопередачи одной пластины:
м2
Эквивалентный диаметр межпластинчатого канала dэ = 0,0096 м
Площадь поперечного сечения одного канала
м2
Приведенная длина канала
м
Теплопроводность материала пластины λст = 15,9 Вт/(м·°С)
Для пластин принятого типа при заданном зазоре действительны уравнения теплоотдачи:а) от конденсирующего пара к стенке (14)б) от стенки к нагреваемому маслу (5)

Решение

Тепловой расчет

1. Количество тепла, передаваемого в единицу времени:

2.

3. Расход нагреваемого масла, исходя из возможностей нагревания его заданным количеством пара, составит:

кг/с = 0,0292 м3

4. Средний логарифмический температурный напор при заданных начальных и конечных температурах сред:

схема потоков:

С

5. Принимаем удельную тепловую нагрузку приближенно q = 60000 Вт/м2 и определим в зависимости от нее критерий Рейнольдса для стекающей пленки конденсата по формуле:


6. Критерий Нуссельта для пластин ПР-0,5М определится по формуле (14):

7. Коэффициент теплоотдачи от пленки конденсата к стенке при том составляет:

Вт/(м2·°С)

8. Для ориентировочного расчета рациональной величины скорости масла принимаем ξ2 = 3,0; α2 = 800 Вт/(м2·°С):

°С

Используя формулу (23) получаем:

м/с

9. Определяем критерий Рейнольдса для потока масла при этом значении скорости:

10. Проверяем принятый коэффициент общего гидравлического сопротивления:

11. Поскольку его значение отличается от принятого, сделаем поправочный пересчет скорости:

м/с

12. Критерий Рейнольдса после уточнения составляет:

13. Критерий Нуссельта со стороны потока масла определяем по формуле (5):

где Prст = 121 при температуре стенки 96,5 °С.

14. Коэффициент теплоотдачи от стенки к нагреваемому маслу при этом:

Вт/(м2·°С)

15. Определяем средний коэффициент теплопередачи в аппарате:

Вт/(м2·°С)

16. Находим поверхность теплопередачи в первом приближении:


м2

17. Принимаем стандартную величину поверхности Fa = 50 м2 и проверяем величину удельной тепловой нагрузки:

Вт/м2

18. При этом Reк для пленки конденсата:

19. Уточняем число Нуссельта для пленки конденсата и находим уточненное значение коэффициента теплоотдачи:

;

Вт/(м2·°С)

Компоновочный расчет и анализ работы аппарата

при двух вариантах компоновки

1. Определим площадь поперечного сечения пакета со стороны масла:

м2

Найдем число каналов в одном пакете для масла:

, принимаем m = 31.

2. При полученном числе каналов число пластин в одном пакете для масла:

3. Поверхность теплообмена одного пакета определяется как:

4. Число пакетов со стороны масла в аппарате:

.

Число пакетов не может быть дробным, поэтому рассмотрим два варианта: Х2 = 1 и Х2 = 2.