Д = e0eE /Д и Е – вектора/;
Ф = оSòДdS = /Д и S – вектора/ = =VòrdV – ур-е Максвелла.
11. Бесконечная заряженная плоскость:
Она заряжена с постоянной поверхностной плотностью заряда g.n
E
E E
E E
Выбирается некая поверхность, окруженную зарядом. Определяется вектор Е и ФЕ и точка на основании цилиндрической поверхности. oò EndS = (åq)/e0.
Данное направление Е выбирается, т.к. плоскость бесконечна и нет других преимущественных направлений. В любой точке поверхности Е постоянно и a для любой точки одинакова.
oò EndS = Sб.п.ò EndS + Sосн.ò EndS = = /aб.п. = 900/ = Sосн.ò EndS = E Sоснò dS = = E 2S = /по т-ме Гаусса/ = (1/e0).g.S.
Е = g/(2e0).
12. Поле двух разноименно заряженных плоскостей:
-g |
r
lR
q = rpr2l
Ф = E2prl = (1/e0) rpr2l
E = (rr)/(2e0)
Если есть e1 и e2, то e0*e1(2)
E
1