Смекни!
smekni.com

Изучение материала по теме Гидростатика (стр. 4 из 7)

Можно записать:

S1h1 = S2h2

или

h2/h1 = S1/S2.

Зная, что F1/F2= S2/S1, получим

F1h1 = F2h2.

Произведение силы на расстояние, пройденное телом в направлении действия этой силы, есть работа. Таким образом, А1 = А2, т.е. гидравлическая машина не дает выигрыша в работе.

2.8 РЕШЕНИЕ ЗАДАЧ НА ТЕМУ «ГИДРАВЛИЧЕСКИЙ ПРЕСС»

Задача №1. Какую силу F нужно приложить к малому поршню гидравлической машины, чтобы большой поршень мог поднять груз массой m = 600 кг? Площади поршней S1 = 0,5 см2 и S2 = 30 см2.

Решение. Отношение сил, действующих на поршни, равно отношению площадей этих поршней:

F1/ F2 = S1/S2

или

F/S1= mg/S2.

ОтсюдаF = mgS1/S2 = 100 Н.

Задача №2. Действие гидравлической машины основано на законе Паскаля, который выполняется для жидкостей и газов. Можно ли в гидравлической машине заменить жидкость газом?

Решение. Из-за сжимаемости газа в нем трудно создать большое давление, поэтому такая машина не будет создавать большой силы.

Задача №3. Можно ли считать медицинский шприц насосом?

Решение. Насос имеет систему клапанов, которых у шприца нет. Движение жидкости в насосе идет все время в одном направлении, в шприце оно идет в одном, затем в противоположном. Действие шприца сходно с действием пипетки.

Задача №4. Малый поршень гидравлического пресса площадью 1,5 см2 под действием силы опустился на 15 см. Площадь большого поршня 9 см2. Определите массу груза, поднятого поршнем, если на малый поршень действовала сила 300 Н. На какую высоту был поднят груз?

Решение. Отношении сил, действующих на поршни, равно отношению площадей этих поршней:

F1/ F2 = S1/S2,

откуда

F2 = F1S2/S1.

Тогда

mg = F1S2/S1

и

m= F1S2/gS1 = 180 (кг).

Так как F1l1 = F2l2, то l2 = F1l1/F2 = S1l1/S2 = 2,5 (см).

2.9 ИЗУЧЕНИЕ ТЕМЫ «ЗАКОН АРХИМЕДА»

Мы знаем, что жидкость давит на дно и стенки сосуда, а если внутрь ее поместить какое-нибудь твердое тело, то оно также будет подвергаться давлению.

Рассмотрим силы, которые действуют со стороны жидкости на погруженное в нее тело. Чтобы легче было рассуждать, выберем тело, которое имеет форму параллелепипеда с основаниями, параллельными поверхности жидкости (рис.1). Силы, действующие на боковые грани тела, попарно равны и уравновешивают друг друга. Под действием этих сил тело только сжимается. А вот силы, действующие на верхнюю и нижнюю грани тела, неодинаковы. На верхнюю грань давит сверху с силой F1 столб жидкости высотой h1. На уровне нижней грани тела давление производит столб жидкости высотой h2. Это давление, передается внутри жидкости во все стороны. Следовательно, на нижнюю грань тела снизу вверх с силой F2 давит столб жидкости

высотой h2. Но h2 больше h1, следовательно, и модуль силы F2 больше модуля силы F1. Поэтому тело выталкивается из жидкости с силой FBЫT, равной разности сил F2F1, т.е.

FBЫT = F2F1.

Рассчитаем эту выталкивающую силу. Силы F1 и F2, действующие на верхнюю и нижнюю грани параллелепипеда, можно вычислить по их площадям (S1 и S2) и давлению жидкости на уровнях этих граней (p1 и р2).

F1=p1S1 и F2=p2S2,

где p1=pжgh1, p2 =pжgh2, aS1 = S2 = S — площадь основания параллелепипеда.

Тогда

FBЫT=F2 - F1 = pжgh2S - pжgh1S =pжgS(h2 - h1) = pжgSh,

где h – высота параллелепипеда. Ho Sh = V — объем параллелепипеда. Следовательно,

FBЫT = pжgV.

Произведение pжV – масса жидкости в объеме погруженного тела. Произведение массы жидкости и ускорения свободного падения равно силе тяжести, действующей на жидкость. Она в данном случае равна весу жидкости. Таким образом, на тело, целиком погруженное в жидкость, действует выталкивающая сила, направленная вверх и равная весу жидкости в объеме, равном объему этого тела.

Этот закон называют законом Архимеда. Выталкивающую силу также называют архимедовой.

Если в жидкость погружена часть тела, то в формуле выталкивающей силы V – объем той части тела, которая погружена в жидкость.

Существование силы, выталкивающей тело из жидкости, легко обнаружить на опыте. На рис.2, а изображено тело, подвешенное к пружине со стрелкой-указателем на конце.

Растяжение пружины отмечает на штативе стрелка. При опускании тела в воду пружина сокращается (рис. 2, б). Такое же сокращение пружины получится, если действовать на тело снизу вверх с некоторой силой, например нажать рукой.

Следовательно, опыт подтверждает, что на тело, находящееся в жидкости, действует сила, выталкивающая это тело из жидкости.

К газам применим закон Паскаля. Поэтому и на тела, находящиеся в газе, действует сила, выталкивающая их из газа.

Архимедова сила зависит от плотности жидкости, в которую погружено тело, и от объема этого тела. Но она не зависит, например, от плотности вещества тела, погружаемого в жидкость.

Используя принцип отвердевания, можно показать, что закон Архимеда верен для тела произвольной формы.

Силу, с которой тело, находящееся в жидкости, выталкивается ею, можно рассчитать по формуле. Также можно определить ее значение и на опыте, используя для этого прибор, изображенный на рисунке 3.

К пружине подвешивают небольшое ведерко и тело цилиндрической формы. Растяжение пружины отмечает стрелка на штативе (рис.3, а), показывая вес тела в воздухе. Приподняв тело, под него подставляют отливной сосуд, наполненный жидкостью до уровня отливной трубки, и погружают тело целиком в жидкость (рис.3, б). При этом часть жидкости, объем которой равен объему тела, выливается из отливного сосуда в стакан. Указатель пружины поднимается вверх, пружина сокращается, показывая уменьшение веса тела в жидкости. В данном случае на тело, кроме силы тяжести, действует еще и сила, выталкивающая его из жидкости. Если в ведерко вылить жидкость из стакана (т. е. ту, которую вытеснило тело), то указатель пружины возвратится к своему начальному положению (рис.3, в).

На основании этого опыта можно заключить, что сила, выталкивающая целиком погруженное в жидкость тело, равна весу жидкости в объеме этого тела.

Если бы подобный опыт проделать с телом, погруженным в какой-либо газ, то он показал бы, что сила, выталкивающая тело из газа, также равна весу газа, взятого в объеме тела.

2.10 РЕШЕНИЕ ЗАДАЧ НА ТЕМУ «ЗАКОН АРХИМЕДА»

Задача №1. Пусть золотая корона царя Герона в воздухе весит 20 Н, а в воде 18,75 Н. Определить, из чистого ли золота сделана корона. При решении задачи плотность золота считайте равной округлённо 20000 кг/ м3, плотность серебра – 10000 кг/ м3.

Решение. Архимедову силу найдём как разность между весом короны в воздухе и весом в воде:

.

С другой стороны

.

Тогда

,

отсюда объём короны

.

Если бы корона была из чистого золота, то её масса

.

На самом деле масса короны

.

Т.к. 2,04кг< 2,55кг, то в короне есть примесь серебра.

Задача №2. Кусок железа в воде весит 1,67 Н. Найти его объём.

Плотность железа 7,8г/ см3.

Решение. Вес в воде уменьшается за счёт силы Архимеда:

где

- вес железа в воздухе.

Тогда:

,

отсюда

.