При гидравлическом расчете тепловых сетей, как правило, не учитывают отношение w2/2g, представляющее собой скоростной напор потока в трубопроводе, так как он составляет собой сравнительно небольшую долю полного напора и изменяется по длине сети незначительно. Поэтому расчет производится по формуле
где Нп– полный напор, [м],
Z – высота расположения оси трубопровода над плоскостью отсчета,[м]
Н – пьезометрический напор, [м],
Р - давление в трубопроводе, [Па].
Подставляя полученное выражение в уравнение Бернулли получаем уравнение зависимости давлений (напоров) в различных точках трубопроводов.
(7)Результаты расчетов, произведенных по формулам 6 и 7, с учетом результатов расчетов потерь давления (напора) из таблиц 1 и 2, сведены в таблицу 3.
Таблица 2.3. Результаты расчетов давлений (напоров) в различных точках трубопроводов.
Номер точки | Z | P | Hп | ||
м | МПа | м | |||
Прям. | Обр. | Прям. | Обр. | ||
0 | 0 | 0,690 | 0,230 | 71,3 | 23,9 |
1 | - 4 | 0,636 | 0,336 | 64,7 | 30,9 |
2 | - 4 | 0,624 | 0,347 | 63,4 | 32 |
3 | 12 | 0,513 | 0,296 | 56,5 | 38,7 |
По результатам расчетов, на рисунке 2.1, построен пьезометрический график тепломагистрали №2 тепловых сетей поселка Инской.
3. Анализ результатов расчетов
В виду технической невозможности проведения контрольных замеров давления в точках подключения к магистральным трубопроводам потребителей 1 и 2, измерения давлений производилось на источнике (теплопункт Беловской ГРЭС) и у потребителя 3 (подкачивающая насосная станция ПНС-23).
Величины давлений теплоносителя на ПНС-23 полученные расчетным путем не совпадают с результатами измерений.
Таблица 3.1. Давления теплоносителя на ПНС-23
Результаты расчета | Результаты измерений | ||
Рпр, МПа | Робр, МПа | Рпр, МПа | Робр, МПа |
0,513 | 0,296 | 0,49 | 0,32 |
Фактические потери давления в прямом и обратном трубопроводах тепломагистрали №2 на участке 0 – 3 (Беловская ГРЭС – ПНС-23) превышают расчетные на 0,023 МПа на подающем трубопроводе и на 0,024 МПа на обратном (~ 14% от величины расчетных потерь). Вероятными причинами этого могут быть:
· отложение загрязнений на внутренней поверхности трубопроводов;
· несоответствие фактических диаметров трубопроводов проектным;
· наличие неучтенных местных сопротивлений.
Для уточнения причин повышенных потерь давления были произведены дополнительные измерения.
При помощи толщиномера ультразвукового «ВЗЛЕТ УТ», зарегистрированного в Государственном реестре средств измерений РФ под № 18810-05 (сертификат об утверждении типа средств измерений RU.С.27.022.А № 20277), в нескольких точках тепломагистрали были произведены замеры толщины стенки трубы. На подающем трубопроводе толщина стенки составила
мм (то есть отклонение составляет ~1%), на обратном трубопроводе толщина стенки составила мм (то есть отклонение составляет ~0,9%). Ввиду того, что толщина стенки имеет малое отклонение от паспортных характеристик трубопроводов, ее вариация не может быть основной причиной повышенных потерь давления в теплосети.При помощи штангенциркуля с пределом измерений 500 мм и ценой деления 0,1 мм были произведены измерения диаметров трубопроводов в нескольких точках тепломагистрали. Получены следующие данные: на подающем трубопроводе
мм, на обратном трубопроводе . Ввиду того, что отклонение диаметра трубопроводов не превышает 0,8%, то это не может являться основной причиной повышенных потерь давления в теплосети.Оценка шероховатости внутренней поверхности труб, ввиду отсутствия специализированной инструментальной базы, производилась при помощи расходомера-счетчика ультразвукового портативного «ВЗЛЕТ ПР» (сертификат России об утверждении типа средств измерений RU.С29.006.А № 8881/1 и зарегистрирован в Государственном реестре средств измерений РФ под № 20294-00). Расходомер-счетчик ультразвуковой портативный «ВЗЛЕТ ПР» не позволяет напрямую измерять величину шероховатости стенки трубы, но позволяет произвести ее косвенную сравнительную оценку по форме осциллограммы сигнала расходомера.
Сигнал |
Зондирующий импульс |
Рисунок 3.1. Эталонная осциллограмма «незашумленного» сигнала.
Уровень компаратора |
Шум |