Смекни!
smekni.com

Реконструкция бойлерных установок с применением пластинчатых теплообменников (стр. 14 из 22)


5 Применение частотного привода на насосах подпитки теплосети

Частотный способ является одним из наиболее перспективных и широко используемых в настоящее время способов регулирования скорости асинхронного двигателя. Принцип его заключается в том, что, изменяя частоту

питающего асинхронный двигатель напряжения, можно в соответствии с

выражением

изменять его синхронную скорость
, получая тем самым различные искусственные характеристики. Этот способ обеспечивает плавное регулирование в широком диапазоне, получаемые характеристики обладают высокой жёсткостью. Частотный способ к тому же отличается ещё одним важным свойством: при регулировании скорости АД не происходит увеличения его скольжения, как это имеет место, например, при реостатном регулировании. Поэтому при этом способе регулирования потери скольжения оказываются небольшими (
), в связи с чем частотный способ наиболее экономичен.

Наиболее современным является регулирование с помощью преобразователей частоты, которые позволяют плавно регулировать частоту вращения электродвигателя насоса и поддерживать давление в гидросистеме при разных расходах перекачиваемой жидкости. При малых расходах жидкости двигатель насоса вращается с малой скоростью, необходимой только для поддержания номинального давления, и не расходует лишней энергии. При увеличении расхода жидкости преобразователь увеличивает частоту вращения электродвигателя, повышая производительность насоса при сохранении заданного давления.

Современные преобразователи частоты позволяют создавать системы управления без дополнительных аппаратных средств, т. к. имеют встроенные программные функции, позволяющие реализовывать узел сравнения и ПИД-регулятор. Для реализации системы требуется только внешний датчик давления.

Управляемые преобразователи частоты выполняются как полупроводниковые преобразователи в виде неуправляемых и управляемых выпрямителей, автономных инверторов напряжения и тока, инверторов, ведомых сетью, преобразователей частоты с непосредственной связью. Для устранения искажения формы напряжения сети в преобразователях применяют фильтрокомпенсирующие устройства. Виды преобразователей и их комбинации определяются типом электродвигателя и задачами управления, мощностью, диапазоном регулирования, необходимостью рекуперации энергии в сеть, влиянием преобразователей на питающую сеть.

На рисунке показана функциональная схема регулирования электродвигателя насоса с помощью преобразователя частоты.

Наиболее современным и перспективным является преобразователь частоты (ПЧ), в котором реализована технология многоуровневой широтно-импульсной модуляции (ШИМ). Она основана на сложении напряжения от отдельных последовательно соединённых по выходу силовых блоков. Тем самым осуществляется формирование выходного напряжения.

Преобразователь частоты Л-Старт предназначен для частотного пуска и регулирования скорости вращения АД мощностью в диапазоне 250-3150 кВт, с номинальным напряжением 3 кВ, оснащенных короткозамкнутым ротором.

Применение ПЧ обеспечивает:

1) значительное энергосбережение (до 60 %);

2) надёжность работы и продление ресурса работы электродвигателей, а также приводимых ими в движение агрегатов и механизмов;

3) исключение возникновения гидравлических ударов в системе трубопроводов и выхода из строя шестерённых или ремённых механизмов;

4) снижение аварийности оборудования и уменьшение затрат на ремонт и обслуживание, а также сокращение аварийных простоев производства;

5) интегрирование в автоматическую систему управления технологическими процессами предприятия.

6) получить более высокий КПД системы регулирования и её быстродействие, устраняется шум при работе.

- Влияние ПЧ на питающую сеть.

К питающей сети напряжением 3 кВ подключен первичными обмотками входного трансформатора. Питание к силовым блокам подключается с

вторичных обмоток с входного трансформатора по схеме коммутации, которая обеспечивает работу диодных выпрямителей, за счёт чего снижаются колебания тока в сети.

Уровень вызываемых ПЧ колебаний тока и напряжения в сети соответствует стандарту IEEE Std. 519 – 1992.

Применяемое оборудование не требует установки фильтров на входе, а также устройств защиты других потребителей от помех, вызываемых связанными с работой ПЧ колебаниями в сети.

Максимальный входной КПД ПЧ составляет 0,96. ПЧ не требует установки компенсационных конденсаторов для компенсации реактивной мощности.

- Влияние выходного напряжения ПЧ на двигатель.

Установка силовых блоков ПЧ производится из расчёта 3 штуки на фазу, что соответствует семи уровням формирования выходного напряжения. Такое решение эффективно снижает уровень пульсаций на выходе. При этом форма выходного напряжения максимально приближается к правильной синусоиде. Поэтому ПЧ могут применяться для работы с обычными высоковольтными двигателями, при этом не приводят к нагреванию двигателя и снижению его мощности; не имеют ограничений на длину кабеля; не разрушают изоляцию двигателя; нагрузка с переменным моментом не снижает ресурс работы ПЧ.

- Другие особенности.

а) Высокая эффективность. При номинальном режиме работы эффективность работы системы превышает 96 %; эффективность частотно-преобразующей части превышает 98 %.

б) Силовые блоки ремонтопригодны и взаимозаменяемы.

в) Наличие функции ограничения тока снижает возможность отключения ПЧ вследствие срабатывания защиты от превышения тока.

г) Выходное напряжение настраивается автоматически.

д) Силовые блоки управляются посредством оптоволоконных кабелей, что обеспечивает высокую устойчивость к электромагнитным помехам.

е) Встроенный контроллер осуществляет различное оперативное управление.

ж) Три режима управления: местное, дистанционное (от пульта), от автоматизированной системы управления.

з) Имеет систему диагностики неисправностей, производит своевременное оповещение о неисправностях, запись информации о неисправностях.

- Конструкция высоковольтного привода частотного асинхронного (ВПЧА).

ВПЧА поставляется заказчику в виде функционально законченного оборудования, в состав которого входят: ячейка с высоковольтным сухим трансформатором специальной конструкции; ячейка силовых модулей с IGBT-транзисторами и с модулем управления ВПЧА (промышленный компьютер с сенсорным экраном).

Также поставляются датчики технологических параметров, байпас основного электропитания.

Составные части ВПЧА, размещённые в шкафах и имеющие элементы, находящиеся под напряжением, снабжены блокировками, препятствующими включению электроприводов при открытых дверцах и воздействующими на отключение питания электроприводов, или имеют замки для ограничения доступа к составным частям, находящимся под напряжением.

- Принцип работы.

В ПЧ реализован принцип переменный – постоянный – переменный ток. Преобразование из постоянного в переменный ток осуществляется в силовых блоках на IGBT-транзисторах. Входной трансформатор первичной обмоткой подключается к трёхфазной сети напряжением 3 кВ. Вторичные обмотки соединены по схеме треугольник при условии, что каждая последующая группа вторичных обмоток отличается фазовым смещением трансформируемого напряжения. Сдвиг фазы напряжения на последующей группе вторичных обмоток определяется результатом деления 60 угловых градусов на количество групп вторичных обмоток (или количество силовых блоков).

Последовательное включение силовых блоков позволяет организовать работу ПЧ в режиме многоуровневого ШИМ преобразования.

Схема силового блока приведена на рисунке 4. Входные цепи R, S, T подключаются к низкому трёхфазному напряжению вторичной обмотки трансформатора. Напряжение с трансформатора через диодный выпрямитель заряжает конденсаторы.

Накопленная в конденсаторах электрическая энергия расходуется однофазным мостом, состоящим из IGBT-транзисторов Q1 – Q4, для формирования напряжения ШИМ на выходах L1, L2.