Смекни!
smekni.com

Релятивная механика (стр. 3 из 4)

Движение средней точки со скоростью

всегда отстает от движения весов. Таким образом, первым свалится шарик, движущийся против направления движения весов. В результате равновесие нарушится и весы начнут вращаться. Имеем противоречие с данными первого наблюдателя. Что будет с наблюдателем, если он будет стоять под правой частью весов?

Могут ли преобразования Лоренца описывать последовательные переходы от одной инерциальной системы к другой и отвечает ли релятивистский закон сложения скоростей реальным изменениям скорости? Конечно, нет. Для начала напомним, какой смысл вкладывается в релятивистский закон сложения скоростей. Он должен доказывать, что сложение движений не может привести к скорости, большей скорости света. Как в таком случае можно складывать движения? Например, относительно звезд движется наша Земля (фактически существует первая движущаяся система отсчета), с Земли взлетает космический корабль с большой скоростью (фактически "создана" вторая движущаяся система отсчета), затем с этого космического корабля взлетает следующая ракета (третья система отсчета) и т.д.. Именно это должно иметься в виду под последовательным применением преобразований. Тогда отпадает, например, вопрос о том, какую скорость в законе сложения скоростей считать первой, а какую второй (это важно для некоммутативных преобразований). В этом смысле и приводились все примеры выше.

Рассмотрим теперь преобразования Лоренца для произвольных направлений движения:

Легко проверить, что последовательное применение релятивистского закона сложения скоростей (1.6) к величинам

(1.7)

дает ноль. Применим к произвольному вектору

последовательно преобразования Лоренца с тем же набором скоростей. Имеем:

Далее имеем:

Выражения для

и
не будем выписывать в явном виде ввиду их громоздкости. Однако, используя графические программы можно убедиться в следующих свойствах:
1) в новой системе начальное время десинхронизовано в любой точке пространства, кроме начала координат.
2) Промежутки времени изменились:
, то есть мы попали не в первоначальную покоящуюся систему, а в новую движущуюся систему. Следовательно, как минимум, в учебниках не совсем точно раскрывается смысл преобразований Лоренца или релятивистского закона сложения скоростей.
3) Отрезки оказываются не только измененной длины, но и повернутыми. В этом легко убедиться, если найти численно угол поворота, то есть разность

Можно сколько угодно математически объяснять эти свойства псевдоевклидовостью метрики, однако физически все просто. Эти свойства доказывают необъективный (а только кажущийся) характер преобразований Лоренца и релятивистского закона сложения скоростей и их несогласованность между собой. Действительно, поскольку мы последовательно переходили от одной инерциальной системы к другой, а поворот означает неинерциальность системы, то СТО сама выходит за рамки собственной применимости, то есть противоречива. Если бы этот поворот был реальным, то это означало бы необъективность понятия инерциальной системы (так как результат зависел бы от способа перехода к данной системе) и, как следствие, об отсутствии самой базы для существования СТО.

Попробуем разобраться, почему же трактовки из учебников приводят к несогласованности двух выражений: релятивистского закона сложения скоростей и преобразований Лоренца, несмотря на то, что первое выражение выводится из второго. Напомним этот вывод на примере одномерного взаимного движения систем

и
. Исходя из преобразований Лоренца

делим дифференциал

на
с учетом определений
и
и получаем:

Отсюда видно следующее:
1) наблюдатель находится в центре системы

и измеряет расстояние
до исследуемого тела в своей системе
.
2) он считает время
единым в своей системе и определяет скорость тела в своей системе
.
3) он измеряет скорость
системы
относительно
, пользуясь своим (!) временем
, и считает относительные скорости систем взаимно обратными по направлению. Ничего другого этот наблюдатель измерить не может: итоговая величина скорости
является вычисляемой величиной. Таким образом, мы приходим к трактовке [49], изложенной ранее: релятивистский закон сложения скоростей определяет скорость того относительного движения, в котором сам наблюдатель не участвует. Этот эффект не реальный, а кажущийся (когда пользуемся определенными правилами СТО). По сути формулы мы не можем просто перейти ко второй подстановке для определения
, хотя формально в выражение релятивистского закона сложения скоростей можно последовательно подставлять сколько угодно величин скоростей. В случае сложения движений вдоль одной прямой классическое свойство коммутативности сохраняется и противоречие оказывается завуалированным. Но если вектора скорости неколлинеарны, то пункт 3) оказывается неверным и сразу проявляется противоречивость и несогласованность закона сложения скоростей и преобразований Лоренца.

В рассмотренном ранее примере можно поступить по-другому: будем искать последовательность трех преобразований скоростей, сохраняющую первоначальное время в преобразованиях Лоренца неизменным. Тогда легко проверить, что вместо (1.7) может быть взята единственная последовательность:

(1.8)

Однако, во-первых, поворот отрезков остается. Во-вторых, новый набор скоростей не удовлетворяет в данной последовательности закону сложения скоростей, то есть фактически поменялся порядок подстановки скоростей

и
в закон сложения скоростей (что не соответствует сути этого закона). Таким образом, противоречия все равно не устраняются. Одним из проявлений противоречивости СТО является прецессия Томаса: исходя из последовательности инерциальных систем (движущихся прямолинейно и равномерно) вдруг в итоге получается вращение предмета (принципиально неинерциальное движение). Таким образом, переход от излагаемых в стандартных учебниках преобразований Лоренца в "математическом пространстве"
(
) к преобразованиям Лоренца в "пространстве"
или
содержит физические противоречия.