Релятивистское замедление времени было экспериментально подтверждено многими опытами, из которых наиболее наглядным является следующий. В космических лучах присутствуют мюоны – нестабильные элементарные частицы, которые можно также получить на ускорителе. Как показывают лабораторные эксперименты, спустя время t = 210–6 с после рождения эти частицы распадаются на электроны и нейтрино. Рождаются же мюоны в атмосфере из других космических частиц на высоте около 10 км и движутся к земле со скоростью v 0,998 c, т.е. почти со скоростью света. Однако движущаяся с такой скоростью частица, согласно ньютоновской механике, может до своего распада пройти расстояние vt, равное всего 600 м. Следовательно, мюоны никак не могли бы достичь земной поверхности, если принять во внимание высоту, на которой эти частицы рождаются. Тем не менее они обнаруживаются на уровне моря. Объясняется это противоречие тем, что время жизни определялось в системе отсчета, где мюон покоится. В действительности же мюон движется относительно Земли с большой скоростью и вследствие релятивистского замедления времени интервал между событиями его рождения и распада различен для системы отсчета, в которой частица покоится, и системы, в которой она движется с большой скоростью. При переходе от системы покоя мюона к системе, в которой он движется со скоростью порядка 0,998 c, время жизни мюонов возрастает от t до t, т.е. примерно в 16 раз. Измеренное лабораторными методами расстояние, проходимое мюонами от рождения до распада, составит v t = 16600 м, т.е. около 10 км. Этим и объясняется возможность наблюдения мюонов на уровне моря.
Релятивийский закон сложения скоростей.
Напомним, что кинематика не занимается поиском причин движения, а утверждает, например, следующее: если скорости заданы, то можно найти результат сложения скоростей. Вопросы динамики частиц (она занимается причинами движений) требуют отдельного рассмотрения (см. Главу 4).
Сделаем теперь замечание по поводу релятивистского закона сложения скоростей. Для двух систем, непосредственно участвующих в относительном движении, не возникает сомнения при определении их относительной скорости (ни в классической физике, ни в СТО). Пусть система
движется относительно системы со скоростью ; аналогично, система движется относительно со скоростью . Фактически, релятивистский закон сложения скоростей определяет относительную скорость того движения, в котором наблюдатель сам не участвует. Скорость движения системы относительно определится так: (1.5) |
Именно в таком виде (хотя обычно выражают
через и ) раскрывается истинная суть этого закона: он говорит о том, какую относительную скорость систем и будет регистрировать наблюдатель в , если будет пользоваться правилом Эйнштейна для синхронизации времени (с помощью световых сигналов) и измерения длин. Фактически мы опять имеем "закон видимости". (Для случая возможной параметрической зависимости скорости света от частоты это выражение будет изменено - см. Приложения.)Рассмотрим следующее методическое замечание. Весьма странным для кинематических понятий является некоммутативность релятивистского закона сложения скоростей для неколлинеарных векторов. Свойство некоммутативности (и то, что преобразования Лоренца без вращений не составляют группу) слегка упоминается лишь в некоторых учебниках теоретической физики. Однако, например, в квантовой механике аналогичное свойство существенно меняет весь математический аппарат и физически выражает одновременную неизмеримость некоммутирующих величин.
Из общего релятивистского закона сложения скоростей
(1.6) |
видно, что результат зависит от порядка преобразования: например, в случае последовательности
где
и - орты прямоугольной системы координат, получаем нулевую итоговую скорость, а для другого порядка тех же величинполучим ненулевую скорость, которая весьма сложно зависит от скоростей
и . Последовательное применение преобразований (движений) и приводит ка в другом порядке
и приводит кто есть получаем разные вектора (Рис. 1.21).
Что же в таком случае может означать разложение вектора скорости на компоненты? Во-первых, перенос простейших классических методов расчетов (коммутативной алгебры) на релятивистские уравнения (некоммутативные) неправомерен: даже решение векторных уравнений покомпонентно требует дополнительных постулатов, усложнений или разъяснений. Во-вторых, невозможно простое применение методов классической физики (принципа виртуальных перемещений, вариационных методов и т.д.). Пришлось бы даже ноль "индивидуализировать": количество "нулевых" величин, составленных из некоторой векторной комбинации должно быть равным количеству "нулевых" величин, составленных из зеркальной векторной комбинации. Следовательно, и теория флуктуаций также нуждалась бы в дополнительном обосновании. Таким образом, вопреки тезису "о простоте и элегантности СТО" для правильного обоснования даже простейших процедур пришлось бы вводить множество искусственных усложнений и разъяснений (чего нет в учебниках).
Рассмотрим логическое противоречие релятивистского закона сложения скоростей на примере одномерного случая. Пусть имеем весы, имеющие форму горизонтального желоба с горизонтальной поперечной осью посредине желоба. По желобу будут катиться два одинаковых шарика массы
в разные стороны от оси (Рис. 1.22).Чтобы пока избежать обсуждения свойств релятивистской массы поступим так. Пусть трение оси весов отсутствует всюду, исключая точку горизонтального положения ("мертвая точка"). В этом положении порог силы трения не позволяет сдвинуться весам за счет возможной малой разности релятивистских масс (между шарами), но этот порог чувствительности не может воспрепятствовать вращению весов (с "мертвой точки") при отсутствии одного из шаров (если он упадет). Пусть скорости шаров в системе весов одинаковы по модулю. Тогда в этой системе шары одновременно докатятся до краев и упадут вниз, так что весы останутся в горизонтальном положении. Рассмотрим теперь то же движение в системе, относительно которой весы движутся со скоростью
. Пусть только , а , где - скорость звука в материале желоба. Тогда весы можно считать абсолютно жесткими (игнорировать акустические волны). Согласно релятивистскому закону сложения скоростей