Смекни!
smekni.com

Плазменные технологии (стр. 1 из 12)

В.И. БОРОДИН

ПЛАЗМенные ТЕХНОЛОГИИ


Оглавление

1. Плазменные технологии (области применения, преимущества, недостатки, перспективы)

2. Термодинамика и кинетика плазмохимических процессов

2.1 Термодинамический анализ плазмохимических систем

2.2 Кинетика плазмохимических процессов

2.2.1 Кинетика равновесных процессов

2.2.2 Неравновесные плазмохимические процессы

3. Технологическое оформление плазмохимических процессов

3.1 Плазмохимический реактор

3.1.1 Функции распределения по временам пребывания

3.1.2 Характеристики реального реактора вытеснения

3.2 Перемешивание реагентов с энергоносителем в смесителе

3.2.1 Стадии перемешивания

3.2.2 Модель перемешивания газовых потоков в цилиндрических каналах

3.3 Закалка продуктов плазмохимических процессов. Способы закалки

Список литературы


1. Плазменные технологии (области применения, преимущества, недостатки, перспективы)

Одной из основных тенденций развития современной техники и технологии является все более широкое использование высоких параметров технологических процессов: температуры, скорости, времени контакта и т.д.

Обусловлено это, в основном, следующими факторами развития цивилизации в последние десятилетия.

С одной стороны, основные производства, обеспечивающие человечество традиционными многотоннажными продуктами (энергоносителями, металлом, пластмассами и др.), сформировались, в основном, на базе научных концепций XIX – начала XX века или еще более раннего времени (например, металлургия) и обладают рядом недостатков, связанных с многостадийностью, громоздкостью, расточительностью по энерго- и ресурсозатратам, а также большими отходами. Большинство технологий в рамках традиционных подходов достигли своего критического состояния.

Дальнейшее развитие промышленной базы с использованием таких подходов невозможно, так как влечет за собой необоснованное наращивание объема отдельных производств, неоправданные затраты ресурсов для создания производственных площадок и оборудования, быстрое истощение полезных ископаемых, существенное ухудшение экологической обстановки.

С другой стороны, во II половине XX века началось бурное развитие новых отраслей (атомной и реактивной техники, электроники и др.), что потребовало значительного качественного улучшения традиционно используемых материалов, а также создания новых материалов, уникальных по своим свойствам (чистоте, термической и химической стойкости, твердости и т.д.).

Все это предопределило интенсивную работу по поиску и разработке новых технологических решений в металлургии, химической промышленности, энергетике, машиностроении и др.

Одним из путей решения данных проблем является существенное повышение температуры, при которой реализуется тот или иной технологический процесс. Указанные причины привели к возникновению и развитию нового направления физической химии и химической технологии - плазмохимии (ПХ), где осуществление химических реакций происходит в высокотемпературной среде плазмы или созданной плазмой.

Для получения низкотемпературной плазмы (с точки зрения химии плазма является высокотемпературной, так как имеет температуру порядка 103 ÷ 105) используются различные способы. Наиболее простым и широко применяемым способом является электрический разряд в газе – так называемая газоразрядная плазма.

При прохождении электрического тока через газовую среду энергия электрического поля, созданного внешним источником тока, преобразуется во внутреннюю энергию газа. За счет этого, во-первых, повышается его температура, во-вторых, происходит распад атомов и молекул газа на радикалы, ионы, электроны. Происходит возбуждение частиц плазмы, которые затем излучают кванты различного излучения в диапазоне от инфракрасного до ультрафиолетового.

В результате в среде, находящейся в состоянии плазмы, за счет повышения температуры Т значительно повышаются скорости химических реакций w, поскольку, по формуле Аррениуса, w ~ exp(-Ea/T).

Кроме того, в плазме, из-за появления высокореакционных частиц и излучения, возникают физико-химические взаимодействия, которые могут приводить к образованию новых соединений, не образующихся в обычном (низкотемпературном) состоянии (например, соединений из инертных газов). Более того, традиционные химические продукты, полученные в плазме, часто отличаются по своим свойствам от тех же продуктов, но полученных при обычных температурах.

Таким образом, перевод веществ в состояние плазмы увеличивает их реакционную способность.

В зависимости от свойств плазмообразующей среды и условий реализации разряда, состояние плазмы может иметь существенное различие. В частности, состояние плазмы может быть достаточно близким к состоянию термодинамического равновесия (квазиравновесие), а может быть далеким от него (неравновесная плазма). Поэтому ПХ-системы иногда условно разделяют на два больших класса – неравновесные и квазиравновесные.

Состояние квазиравновесной плазмы, характеризующееся одной температурой, можно достаточно точно описывать с помощью равновесной термодинамики (ТД) и статистической физики. Это позволяет предсказать и рассчитать различные параметры, а также продукты химических процессов, которые образуются в такой плазме, не вдаваясь в суть происходящих элементарных явлений, которые в данном случае описываются классической равновесной химической кинетикой.

Гораздо более богатой по реакционным возможностям является неравновесная плазма, которую нельзя характеризовать одной температурой. В такой плазме каждый сорт частиц и их состояние можно характеризовать своей температурой, например, температура электронов, температура ионов, вращательная температура, колебательная температура, температура заселения и др. При этом надо отметить, что здесь «температура» является просто удобным параметром, позволяющим использовать при расчетах известные статистические функции распределения (функции Максвелла, Больцмана, Саха, Планка и др.) для соответствующего рода частиц. Эти температуры могут сильно отличаться друг от друга. Например, в разряде низкого давления температура электронов (десятки тысяч градусов) может быть в сотни раз больше температуры атомов и ионов (сотни градусов).

В неравновесной плазме можно получить самые экзотические продукты (например, различные соединения инертных газов).

Как правило, неравновесная плазма получается при низких давлениях плазмообразующей среды (Р ≤ 100 мм рт. ст.), а квазиравновесная – при высоких давлениях (P ≥ 1 атм).

Для получения плазмы используют все виды электромагнитных полей: постоянное, переменное, высокочастотное (ВЧ), сверхвысокочастотное (СВЧ), оптическое излучение и т.д., а также различных типов разрядов: дуговой, тлеющий, коронный и др. Свойства плазмы, способы и устройства для ее получения (генераторы плазмы) подробно описаны в литературе [1–7].

Основные диапазоны изменения параметров плазмы, используемой в технологиях, составляют по давлению от 10-5 мм рт. ст. до 200 атм, по температуре T = 103 ÷ 105 K.

Рассмотрим примеры конкретных технологических применений плазмы.

Неравновесные ПХ-процессы, в основном, используются для обработки поверхностей различных материалов: модификация поверхностей, нанесение и снятие пленок и т.д. Все эти процессы являются малотоннажными. Процессы проводят, как правило, в тлеющем разряде при давлениях плазмообразующей среды порядка или меньших 1÷10 мм рт. ст.

Плазмохимическая модификация поверхностей. Под модификацией поверхности твердого тела подразумевают изменение химического состава и структуры поверхностного слоя.

ПХ-обработка позволяет получить материалы с уникальными свойствами поверхности, обусловленными одновременным воздействием излучения плазмы и химически активных частиц при относительно низкой температуре поверхности.


ПХ-обработке могут подвергаться различные материалы: от металлов и их сплавов до различных полимеров как естественного, так и искусственного происхождения.

ПХ-обработка металлов и сплавов. Типичная схема установки для модифицирования поверхностей металлов в плазме тлеющего разряда приведена на рис. 1 [8]. В откачиваемую металлическую камеру помещают обрабатываемую деталь. В пространстве между поверхностями детали и стенки зажигается тлеющий разряд. Состав и давление плазмообразующего газа легко регулируется системой газоснабжения.

Образующиеся в плазме заряженные частицы бомбардируют поверхность детали, в результате чего может изменяться химическая и кристаллическая структура поверхности и ее свойства (твердость, химическая и термическая стойкость и др.).

Например, в машиностроении широко используется процесс азотирования поверхности деталей, когда в качестве плазмообразующего газа используется азот. Бомбардировка поверхности детали происходит ионами азота, поверхность насыщается азотом, образуя нитрид железа. В результате на поверхности детали образуется слой, обладающий высокой твердостью и коррозионной стойкостью.

Азотированию подвергаются, в основном, трущиеся детали (валы, штоки и др.), что позволяет увеличить ресурс их работы в несколько раз. Наиболее крупные установки для азотирования (США, Франция) позволяют обрабатывать валы диаметром до 2 м и длиной до 12 м. Мощность таких установок достигает 300 кВт при давлении Р = 0.1–10 торр и напряжении U = 500 –1500 B. Время обработки варьируется от 10 минут до 20 часов, при этом толщина азотированного слоя изменяется от 30 мкм до 0.7 мм.