В связи с постоянным удорожанием используемого для производства ацетилена сырья – нефти и газа, а также с перспективой их исчерпания в обозримом будущем в мире достаточно интенсивно разрабатываются ПХ-технологии, базирующиеся на более распространенном и менее дефицитном сырье – угле и углесодержащих промышленных отходах.
Вторым классическим (традиционным) направлением ПХ-переработки органических материалов является конверсия их в синтез-газ (конвертированный газ), состоящий из СО и Н2.
Синтез-газ широко используется в различных химических процессах при производстве аммиака, метанола, высших спиртов и других химических продуктов, а также жидкого топлива, заменяющего бензин и дизельное топливо. Его применяют как восстановитель при получении металлов и других соединений из оксидного, сульфидного и другого сырья.
При добавлении к углеводородам (система С–Н) кислородсодержащих соединений происходит интенсивное образование соединения СО, которое становится превалирующим в системе С–Н–О, поскольку из всех молекул молекула СО имеет наибольшую энергию связи.
В отличие от ацетилена, синтез-газ (СО + Н2) термодинамически устойчив и при комнатной температуре, поэтому получить его технологически гораздо проще и дешевле – отпадает необходимость в закалке пиролизного газа и поддержании слишком высоких температур процесса.
Углеродсодержащим сырьем для получения синтез-газа может служить любой вид материалов, содержащий углерод: газообразные и жидкие углеводороды, уголь, торф, биомасса, промышленные и бытовые отходы. Для стехиометричности состава в качестве недостающего кислородсодержащего сырья используются вода (водяной пар), двуокись углерода, воздух и кислород.
В принципе синтез-газ получают без всякой плазмы обычным процессом сжигания. Однако в отличие от таких методов плазменный метод позволяет обеспечить низкое содержание СО2, Н2О в продуктах конверсии или полное их отсутствие и таким образом исключить дорогостоящую операцию очистки там, где синтез-газ требуется достаточно чистым, например, в органическом синтезе, в металлургии и др.
При плазменном пиролизе, благодаря высоким температурам, реализуемым в зоне реактора, продукты пиролиза состоят из газовой составляющей. Степень превращения сырья в целевые продукты при этом близка к 100%. Причем в газообразных продуктах отсутствуют смолы, фенолы и углеводороды, загрязняющие продукты обычной газификации сырья.
Для конверсии органического сырья в синтез-газ используются технологические схемы, подобные приведенной на рис. 4, но без узла закалки. Поскольку время нагрева сырья здесь не лимитируется, то нет необходимости создавать высокие скорости прогрева частиц сырья, что является серьезной проблемой при получении ацетилена, да, зачастую, и нет необходимости до такой степени измельчать исходное сырье.
Поскольку температуры конверсии не очень велики, то для реализации процесса в качестве ПХ-реакторов часто используют достаточно вместительные емкости, обычно футерованные внутри высокотемпературными материалами, выдерживающими рабочие температуры процесса (рис. 5 [6] и 6 [13]).
Плазменный газификатор, схема которого приведена на рис. 6, используется для получения газа-восстановителя при производстве губчатого железа в процессе Plasmared, разработанном шведской фирмой SKF Steel Engineering AB. В первом варианте для получения восстановительного газа использовали только уголь и водяной пар (реакция С + Н2О → →СО + Н2).
В дальнейшем фирма SKF разработала процесс получения конвертированного газа высокой калорийности из различных углесодержащих соединений: торфа, биомассы, отработанных масел, угля, бытовых и промышленных отходов.
Фирма «Плазма энерджи» (США) также разработала ПХ-процесс получения топливного газа из угля, торфа и различных органических отходов (в том числе из старых автопокрышек). Стоимость такого топлива сопоставима со стоимостью импортируемой в США нефти.
Наиболее крупное производство конвертированного газа из угля и биомассы для восстановления губчатого железа реализовано в ЮАР немецкой фирмой «Хюльс» (более 250 тыс. т в год).
Таким образом, второе направление переработки органических материалов в синтез-газ уже в настоящее время становится рентабельным и развивается, особенно в металлургии, которая постепенно переходит к бескоксовым способам производства металла, а синтез-газ в будущем станет основным восстановителем.
ПХ-переработка неорганического сырья.
Наиболее масштабные плазменные процессы реализованы в металлургии, причем на всех ее стадиях: вскрытие рудного сырья, восстановление металлов, финишная обработка полученных продуктов.
Плазменные процессы вскрытия рудных минералов. Под вскрытием подразумевается разложение химически сложного минерала на более простые вещества, из которых легко выделить необходимые продукты.
В качестве примера отметим плазменную переработку минерала циркона ZrSiO4. Схемы ПХ-реакторов для этого процесса, которые, в общем, являются типичными для большинства процессов плазменной переработки неорганического сырья, приведены на рис. 7 [7]. Измельченное исходное сырье подается в плазменную струю, нагревается до высоких температур, испытывает превращения и падает вниз, где охлаждается и проходит дальнейшую обработку.
В случае циркона, после его прохождения через плазму, образуется механическая смесь окислов циркония и кремния (ZrO2+ SiO2), которая легко разделяется.
На этом принципе в США организовано промышленное производство окиси циркония. Получаемая таким образом ZrO2 оказывается более высокого качества, чем в обычной технологии, при более низких капиталовложениях и удельных расходах электроэнергии (2.2 кВт-ч/кг против 9.2 кВт-ч/кг в обычных печах). Данный процесс характеризуется отсутствием загрязнения окружающей среды отходящими газами и побочными продуктами.
Аналогичным образом обрабатывают роданит, серпентиновую руду, ильменит, молибденит и другие минералы с целью получения оксидов металлов с дальнейшим их восстановлением до металлов.
ПХ-процессы в восстановительной металлургии.
Известно, что широко распространенный традиционный доменный способ получения металла, несмотря на большую производительность и высокую степень освоения, обладает рядом недостатков: многостадийностью, связанной с предварительной стадией переработки сырья (агломерация, окомковывание) и восстановителя (коксохимическое производство); загрязнением окружающей среды; материалоемкостью и энергоемкостью. В результате металлургия входит в число наиболее экологически «грязных» производств.
Поэтому в мире всегда проявлялся интерес к поискам бескоксовой и безагломерационной металлургии. Особенно этот интерес усилился в последние 10–15 лет. Это связано с истощением запасов качественных коксующихся углей и вынужденным переходом на некачественные угли, с увеличением стоимости кокса, ужесточением требований по охране окружающей среды, постоянно растущими требованиями к качеству металлов, с возможностью организации эффективного маломасштабного производства металла бескоксовым способом на базе местных ресурсов сырья и топлива при ограниченных финансовых возможностях.
В настоящее время происходит постоянное наращивание мощностей бескоксовой металлургии (удвоение производства каждые 7–8 лет), связанной в основном с бескоксовым получением в шахтных печах металлизированного сырья (губчатое железо).
Среди разрабатываемых технологий бескоксовой металлургии перспективными являются технологии плазменного восстановления. Первыми плазменными процессами, разработанными в экстрактивной металлургии, были процессы производства цветных и редких металлов. Большое внимание во многих странах уделяют разработке ПХ-процессов в черной металлургии, что связано с устранением присущих им недостатков, отмеченных выше.
Плазменное восстановление железорудного сырья разрабатывается в двух направлениях: твердофазное получение губчатого или порошкового железа и восстановительная плавка.
Типичная схема данных технологических процессов приведена на рис. 8 [14]. Здесь представлена схема процесса, разработанная фирмой SKF (Швеция). В качестве сырья для восстановительного газа могут использоваться любые органические материалы (см. рис. 6).
Интенсивно ведутся работы по плазменной восстановительной плавке чугуна из рудного сырья. Такие опытно-экспериментальные установки с противоточной шахтой, прямоточными вертикальными реакторами с водоохлаждаемыми или футерованными металлическими стенками, установленными над ванной-сборником расплава, имеются в США, Франции, Швеции, Австрии, Бельгии и ряде других стран. Получающийся чугун по составу близок к доменному.
Производство цветных и редких металлов и их соединений
Получение цветных, редких металлов и восстановительный синтез соединений их с углеродом, азотом, бором, кремнием предоставляют намного более широкие возможности для применения низкотемпературной плазмы, чем черная металлургия. Это обусловлено не только обширной номенклатурой видов сырья и продуктов, но и меньшими объемами производства, а также повышенными требованиями к его экологической чистоте.
Все варианты существующих восстановительных плазменных агрегатов в этой области можно разделить на две основные группы: в первой процессы идут с жидкой ванной расплава, во второй формирование целевого продукта осуществляется в газодисперсном потоке, при смешении его с плазменной струей. Сырье в обоих случаях может быть введено в высокотемпературную зону аппарата в виде паров, расплава, раствора или порошка необходимой крупности.