ПХ-обработка органических материалов. При обработке плазмой органических материалов как искусственного, так и естественного происхождения (полимеров, пластмасс, тканей, бумаги и др.) изменяется состав и реакционная способность их поверхностей, что приводит к изменению их свойств.
Так, при обработке тканей может изменяться адгезия, смачиваемость, окрашиваемость, возможность склеивания как между собой, так и с другими материалами. Может резко уменьшиться усадка обработанных волокон шерсти, измениться их электростатические характеристики и др.
Обработка органических материалов может производиться в вакуумированных объемах по типу установки, приведенной на рис. 1, а также при высоких давлениях.
На рис. 2 [9] приведена схема установки для обработки рулонного материала в плазме коронного разряда. Плазма горит в зазоре под внешним электродом, воздействуя на движущееся полотно. Обработка натуральных полимеров в плазме коронного разряда приводит к увеличению сцепления волокон между собой, а также с другими материалами. Так, после обработки в кислородной плазме сила сцепления пластин из целлюлозы друг с другом, а также с полимерными пленками возрастает в 5–7 раз.
Получение и снятие пленок и покрытий. С помощью плазмы можно получать и снимать как неорганические, так и органические пленки, что широко используется в различных отраслях промышленности, науки и техники.
Так, например, плазменные методы осаждения и травления пленок широко используются в микроэлектронике при изготовлении элементов тонкопленочных интегральных схем.
На рис. 3 [10] приведена схема плазменной обработки кремниевых пластин в микроэлектронике.
Через объем ПХ-реактора с обрабатываемыми пластинами пропускается плазмообразующий газ, соответствующий заданной технологической операции. Плазма при давлениях порядка 0.1–10 мм рт. ст. создается с помощью индуктора (катушки), надетого на реактор и питаемого от ВЧ-генератора.
В данной схеме можно проводить различные технологические операции с кремниевыми пластинами: плазменная очистка поверхностей, ПХ-травление и удаление фоторезиста, осаждение диэлектрических пленок и антикоррозионных (пассивирующих) покрытий.
Переход от одной операции к другой производится заменой состава продуваемого плазмообразующего газа. В качестве рабочих газов при химической очистке и травлении чаще всего используют различные органические галогенсодержащие соединения, например, CHCl3, CHCl2F, CHClF2 и др. [11].
Плазменные («сухие») методы обработки при производстве элементов электронной техники используют сравнительно дешевые газообразные реагенты, имеют высокую производительность и легко поддаются автоматизации.
В кратком пособии невозможно описать все разнообразие пленок и покрытий, получаемых с помощью плазмы. Отметим только два из них – покрытия нитридом титана и тефлоном. Нитрид титана (TiN) является очень твердым, термо- и химически стойким веществом и широко используется для покрытия режущих элементов различных инструментов (в том числе сверл, фрез, буров и т.д.), а также различных поверхностей, работающих в химически агрессивных средах (в том числе искусственных зубов в стоматологии). Обладая красивым золотистым цветом, TiN используется для декоративной отделки помещений («золотые» кафельные плитки).
В различных технических устройствах широко используются резинотехнические изделия (манжеты, сальники и т.д.), которые должны легко скользить по сопряженным плоскостям. Сама резина этим свойством не обладает, поэтому покрытие таких изделий материалом с малым значением коэффициента трения – тефлоном, приводит к существенному увеличению износостойкости изделия, тем более что тефлон предохраняет их от воздействия агрессивных сред.
Плазмой обрабатываются не только твердые материалы, но и различные жидкости. При этом, в отличие от твердых тел, в жидкости могут возникать значительные потоки переноса массы (диффузия, конвекция), в результате чего возникшие при взаимодействии с плазмой физико-химические изменения в поверхностном слое жидкости могут распространиться по всему ее объему. Таким образом, за счет процессов перемешивания обработку объема жидкости можно проводить через обработку ее поверхности.
В качестве примера такого процесса можно отметить обработку плазмой воды с целью ее очистки и обеззараживания [12]. Обеззараживание воды плазменной обработкой может служить альтернативой процессу хлорирования, поскольку при хлорировании воды образуются хлор-органические соединения, обладающие канцерогенными свойствами.
Плазмохимические методы переработки материалов. Под ПХ-переработкой подразумеваются процессы, в которых все исходное вещество (а не только его поверхность) проходит стадию высокотемпературного состояния, обусловленного взаимодействием с плазмой, а химические реакции осуществляются, в основном, в газовой фазе. Из-за необходимости иметь высокую производительность в многотоннажных технологиях используется, как правило, квазиравновесная плазма высокого давления, которая получается в специальных устройствах – генераторах плазмы (плазмотронах).
Схема организации ПХ-переработки материалов приведена на рис. 4. Перед тем как попасть в ПХ-реактор, исходное сырье претерпе-вает некоторую обработку, среди которой следует отметить измельчение (диспергацию). Чем более диспергировано вещество, тем более эффективна переработка, поскольку нагрев и испарение более мелких частиц происходит быстрее и с меньшими затратами энергии.
Из узла подготовки сырье поступает в ПХ-реактор, где перемешивается с плазмой, поступающей из плазмотрона, нагревается, испаряется, вступает в различного рода химические реакции. Нередко плазма образуется в том же ПХ-реакторе (совмещенный реактор-плазмотрон).
Продукты реакций охлаждаются и разделяются. Часто охлаждение производится с очень высокой скоростью (закалка): 104–108 К/с . Задача закалки состоит в сохранении тех продуктов, которые получились при высоких температурах и которые при охлаждении могут либо разложиться, либо вступить в другие химические реакции в процессе охлаждения.
С помощью закалки можно получать вещества в метастабильном состоянии, отличающемся от нормального состояния (структурой, электрическими, термическими и другими свойствами).
ПХ-переработка органического сырья и отходов.
В литературе описаны результаты сотен исследований по взаимодействию плазмы с различными органическими веществами разной глубины и различной степени проработанности для целей организации производства. Однако даже основная масса проработанных и подготовленных для многотоннажной производственной реализации процессов до сих пор не реализованы. И это, в первую очередь, обусловлено основным недостатком ПХ-технологий – большим потреблением электрической энергии, которое делает их в ряде случаев пока не конкурентоспособ-ными с другими технологиями.
И, тем не менее, в мире существуют, а также находятся в стадии разработки большое количество технологий ПХ-переработки органических материалов для различных целей: получения мономеров для синтеза (включая часто и сам синтез) полимеров, пластмасс, энергоносителей, восстановителей и др. При этом в качестве исходного продукта используются не только добываемое сырье земных недр, но и возобновляемое растительное сырье, а также промышленные и бытовые отходы.
Все многотоннажные процессы ПХ-переработки органических материалов можно условно разделить на традиционные (классические) и нетрадиционные. К традиционным можно отнести процессы, давно разработанные и промышленно реализованные еще в первой половине ХХ столетия, которые, однако, постоянно совершенствуются исходя из конкретной ситуации, складывающейся в мире в тот или иной промежуток времени.
Первым направлением традиционной многотоннажной ПХ-технологии является производство ацетилена, который является сырьем для производства разнообразных продуктов основного органического синтеза, а также используется в некоторых других отраслях промыш-ленности.
ПХ-производство ацетилена.
Бурное развитие производства ацетилена и ПХ-метода его получения произошло в 40-е и 50-е годы ХХ столетия. Многотоннажный органический синтез в мире (особенно в Европе) до 60-х годов в основном базировался на ацетилене. Были построены десятки заводов по его производству плазмохимическим способом.
Однако в 60-е годы были разработаны способы получения тех же продуктов из относительно дешевого этилена. В результате основная масса заводов по производству ацетилена была закрыта, а его роль в 70-е годы стала незначительной.
Но с течением времени ситуация в мире постепенно меняется в пользу ацетилена, поскольку этилен вместе с его источником производства – нефтью быстро дорожает. Интерес к ацетилену как исходному сырью для органического синтеза постоянно возрастает и считается, что через несколько десятилетий ацетилен может занять снова доминирующее положение в органическом синтезе.
Следует отметить, что для производства ацетилена сырьевая база гораздо шире, чем для этилена, и его можно эффективно получать не только из нефти или газа, но и из угля, а также из растительного сырья и органических промышленных и бытовых отходов.
В промышленных масштабах ПХ-способ получения ацетилена осуществляют пиролизом углеводородов, либо непосредственно в дуговом разряде (электрокрекинг), либо в плазменной струе водорода, нагреваемой в плазмотроне. Получение ацетилена в промышленных масштабах впервые было осуществлено в Германии на заводе в г. Хюльсе в 1940 году с производительностью 60 тыс. т ацетилена в год, который работает до сих пор.