Посредством указанного разложения по таблице соответствий находится выражение для
При этом
Заметим, что среди корней полинома
Если же
Полученная функция является гармонической с амплитудной
Последняя будет убывающей при
Следовательно, система устойчива, если действительные (вещественные) части корней знаменателя характеристического уравнения
Для наглядного суждения о характере и значениях корней удобно изображать их точками на комплексной плоскости. Так, например, на рисунке 2 показано расположение на комплексной плоскости корней некоторого полинома знаменателя пятой степени.
Здесь корнями являются:
Наличие у характеристического уравнения корней с положительными вещественными частями приводит к тому, что любое случайное воздействие, каким бы оно не было малым, вызывает нарастающие по амплитуде свободные колебания. Значения амплитуды колебаний ограничиваются нелинейными свойствами усилительных приборов. Внешне рассматриваемая цепь без каких-либо видимых воздействий "сама" переходит в режим установившихся колебаний или, как говорят, "самовозбуждается".
Электрические цепи, у которых свободные колебания, пока они малы, возрастают по времени, причем предел их возрастания определяется нелинейными свойствами элементов цепи, называют неустойчивыми.
Характеристическое уравнение знаменателя ОПФ любой неустойчивой цепи должно иметь корни, расположенные в правой части комплексной плоскости. Одной из важнейших задач, возникающих при проектировании самых разнообразных цепей с зависимыми источниками, является задача исследования проектируемой цепи на устойчивость.
Критерий устойчивости Гурвица, полиномы Гурвица
Во всех задачах исследования цепи на устойчивость необходимо решить, имеет ли характеристическое уравнение знаменателя ОПФ проектируемой цепи корни, расположенные в правой полуплоскости.
Методы, с помощью которых можно судить об устойчивости цепи, не прибегая к вычислению корней характеристического уравнения знаменателя, называют критериями устойчивости.
В настоящее время известен ряд критериев устойчивости, среди которых чаще всего используются критерии устойчивости, предложенные А. Гурвицем (1895), А. В. Михайловым (1938) и Г. Найквистом (1932). Не все они одинаково удобны и универсальны, в каждом частном случае один из них может оказаться предпочтительным.
Один из первых критериев устойчивости был найден немецким математиком А. Гурвицем и опубликован им в 1895 году. Он определил условия, которым должны удовлетворять специально составленные соотношения между коэффициентами алгебраического уравнения с тем, чтобы все корни последнего имели отрицательные вещественные части или, иными словами, были расположены в левой полуплоскости.
Формулировка критерия устойчивости Гурвица: (в алгебре критерий Рауса-Гурвица) цепь будет устойчивой, если определитель:
составленный из коэффициентов полинома знаменателя ОПФ:
и все его главные миноры
Этот критерий приводится без доказательства. Определитель принято называть определителем Гурвица. Он составляется по следующему простому правилу. На главной его диагонали выписываются коэффициенты в том порядке, в котором они расположены в уравнении, начиная с коэффициента
Пример. Пусть дан полином четвертой степени:
.
Ему соответствует определитель Гурвица:
Главные миноры этого определителя:
Определитель и все его миноры положительны. Следовательно, все корни рассматриваемого уравнения
Полиномы с вещественными коэффициентами, нули которых расположены в левой полуплоскости, принято в ТЭЦ называть полиномами Гурвица или устойчивыми полиномами. В дальнейшем их будем обозначать J(p). Можно показать, что положительность коэффициентов полинома и неравенство их нулю есть необходимое, но недостаточное условие принадлежности его к классу полиномов Гурвица.
Так полиномы
В дальнейшем ОПФ пассивных цепей будем записывать в виде:
4. Связь между ОПФ и КПФ
КПФ образуется из ОПФ путем замены оператора
Если степень, в которую возводится оператор
Отсюда следует вывод, что вещественные части полиномов представляют собой четные функции частоты, а мнимые – нечетные, т. е. можно в общем виде записать:
,
где
Возьмем модуль и аргумент и в результате получим:
Откуда:
АЧХ:
ФЧХ: .
По этим выражениям можно построить графики.
Литература
1. Белецкий А. Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986. (Учебник);
2. Бакалов В. П. и др. Теория электрических цепей. – М.: Радио и связь, 1998.
3. Качанов Н. С. и др. Линейные радиотехнические устройства. М.: Воен. издат., 1974. (Учебник);
4. Попов В. П. Основы теории цепей – М.: Высшая школа, 2000.(Учебник)