ГлаваIII. Применение полиномов Лагерра в квантовой
механике.
Многочлены Лагерра нашли свое применение в квантовой механике:
3.1.В радиальной части решения уравнения Шредингера для атома с одним электроном (нормирование волновой функции).
Разложение
волновой функции на множители, каждый из которых зависит либо от радиальной, либо от угловых координат, позволяет разбить общее условие нормировки
на два: по радиальной координате
и по угловым:
.Для справочных целей выпишем полные выражения для нормированных волновых функций. Сумма
может быть выражена через так называемую гипергеометрическую функцию. Радиальная часть волновой функции с учётом условия нормировки равнаЗдесь F — вырожденная (конфлюэнтная) гипергеометрическая функция (функция Куммера):
которая сходится при всех конечных z; параметр α произволен, а β предполагается не равным нулю или целому отрицательному числу. Если α есть целое отрицательное число (или нуль), то F(α, β, z) сводится к полиному степени |α|. Радиальные волновые функции выражаются также через обобщённые полиномы Лагерра :
3.2.Переход в осцилляторе.
Расчет переходов в осцилляторе под действием внешней силы.
Под влиянием внешней силы
квантовый осциллятор может переходить с одного уровня энергии ( ) на другой ( ). Вероятность этого перехода для осциллятора без затухания даётся формулой: ,где функция
определяется как: ,а
— полиномы Лагерра.Заключение
В данной работе были рассмотрены полиномы - алгебраические многчлены Якоби, Эрмита и Лагерра, их форма записи, общие свойства. Более подробно рассматривались полиномы Лагерра, они нашли свое применение в квантовой механике - являются частью рассчетов вывода уравнения Шредингера и уравнения переходов в осцилляторе под действием внешней силы.
Используемая литература
1. Никифоров А. Ф., Уваров В. Б., Специальные функции математической физики, 2 изд., М., 1984
2. Суетин П. К., Классические ортогональные многочлены, 2 изд., М., 1979
3. Фок. Начало квантовой механики.
Приложение
* Если скалярное произведение двух элементов пространства равно нулю, то они называются ортогональными друг другу
** Главное (радиальное) квантовое число — целое число, обозначающее номер энергетического уровня. Характеризует энергию электронов, занимающих данный энергетический уровень. Является первым в ряду квантовых чисел, который включает в себя главное, орбитальное и магнитное квантовые числа, а также спин. Эти четыре квантовые числа определяют уникальное состояние электрона в атоме (его волновую функцию). Главное квантовое число характеризует энергию электрона. Оно обозначается как n. При увеличении главного квантового числа возрастают радиус орбиты и энергия электрона.
Наибольшее число электронов на энергетическом уровне, с учетом спина электрона определяется по формуле
*** Орбитальное квантовое число (азимутальное) - определяет азимутальное распределение плотности вероятности локализации электрона в атоме, то есть форму электронного облака и определяет энергетический подуровень данного энергетического уровня.
Связано с n -главным (радиальным) квантовым числом соотношением:
* см. приложение
** см. приложение