Смекни!
smekni.com

Квантові ями . Квантовий дріт, нитки. Квантові точки. Надгратки (стр. 2 из 4)

Резонансний тунельний діод - це перше реальний пристрій з квантовою ямою і бар'єрами. Він був створений Лео Есакі і Чангом в 1974 році. Ідею приладу запропонував Л. Йогансен ще в 1963 році.

Лазери на квантових ямах.

Квантові структури використовуються для створення лазерів. Вже сьогодні ефективні лазерні пристрої на квантових ямах дійшли до ринку і застосовуються у волоконно-оптичних лініях зв'язку. Для роботи будь-якого лазера необхідно створити інверсну населеність енергетичних рівнів. Тобто, на більш високому рівні має перебувати більше електронів, ніж на низькому, у той час як у стані теплової рівноваги ситуація обернена. Кожному лазеру необхідний оптичний резонатор або система дзеркал, яка зосереджує електромагнітне випромінювання в робочому об'ємі.

Для того щоб квантову яму перетворити на лазер, потрібно її під'єднати до двох контактів, через які електрони можуть безперервно надходити в робочу область. Нехай через один контакт електрони надходять у зону провідності. Далі, роблячи стрибки із зони провідності у валентну зону, вони будуть випромінювати кванти, тобто порції електромагнітного випромінювання (рис. 3). Потім через валентну зону носії струму повинні йти на інший контакт.

Рис. 3 - Енергетична схема лазера на квантовій ямі

Частота випромінювання визначається умовою

(4),

де

і
– енергії перших енергетичних рівнів відповідно в зоні провідності і валентної зоні, Eg - ширина забороненої зони.

Електромагнітне випромінювання, що генерується лазером, потрібно сконцентрувати в центральній, робочої області приладу. Для цього показник заломлення внутрішніх шарів повинен бути більше, ніж зовнішніх. Внутрішня область відіграє роль хвилеводу. На кордонах цього хвилеводу нанесені дзеркала, які утворюють резонатор.

Лазери на квантових ямах мають переваги в порівнянні зі звичайними напівпровідниковими лазерами. Ці прилади можна перебудовувати, керуючи параметрами енергетичного спектру. Так, при зменшенні розмірів ями мінімальні енергії електронів

в зоні провідності і
у валентній зоні збільшуються і, відповідно до формул (3) і (4), частота, що генерується лазером, зростає. Підбираючи товщину квантової ями, можна домогтися, щоб згасання хвилі в оптичній лінії зв'язку, у яку надходить випромінювання, було мінімальним. Лазери на квантових структурах дуже економні, вони живляться меншим струмом, ніж інші напівпровідникові лазери, і дають більше світла на одиницю споживаної енергії - до 60% електричної потужності перетворюється на світло.

Розділ 2. Квантовий дрот, нитки

2.1 Квантовий дріт

Квантовими дротами називають структури товщиною всього в один атом. Фахівці з дослідницького центру IBM Н.Д. Ланг і П. Авуріс виконали теоретичний розрахунок провідності квантового дроту, що складається з атомів вуглецю. Згідно з їх обчисленням, провідність квантового дроту при збільшенні її довжини змінюється не монотонно, а коливається. Вона досягає максимумів для дроту, що складається з парного числа атомів, оскільки в цьому випадку можливе більше число дозволених електронних станів. У Японії. Х. Оніші і його колеги з Токіо створили квантовий дріт з атомів золота між голкою скануючого тунельного мікроскопа і поверхнею золотого зразка. При збільшенні відстані між голкою і поверхнею дріт стає довшим і тоншим. Провідність дроту при його розтягуванні змінювалася стрибками на квантову одиницю провідності 2e2/h. Така ж стрибкоподібна зміна провідності спостерігалося і в університеті Лейдена (Нідерланди). Створений там квантовий дріт являв собою мікроскопічний міст між двома кінцями надломленої золотої дротини.

2.2 Особливості квантових дротів

Одним з найбільш важливих наслідків отримання одновимірних балістичних каналів всередині гетероструктур GaAs-AGaAs і кремнієвих надграток стало виявлення квантування провідності в залежності від напруги на затворі, керуючого шириною квантового дроту, яке проявляється у вигляді серії одномірної провідності, розділених ступенями величиною gsgve2/h; де gs і gv - спіновий і частковий фактори відповідно. Зростання напруги на затворі призводить до збільшення ширини квантової дроту, тим самим стимулюючи заповнення більшої кількості підзон розмірного квантування. При цьому залежність G(Vg) має яскраво виражений ступінчастий характер, так як кондактанс квантового дроту змінюється стрибком кожного разу, коли рівень Фермі співпадає з однією з підзон розмірного квантування:

де N-число заповнених підзон розмірного квантування, що відповідає номеру верхній заповненої одномірної підзони квантовий дроту.


Рис. 4 . Схема розщепленого затвора (при напрузі Ug), що використовується для одержання модульованих квантових дротів всередині квантових ям .

Спостерігається величина сходинок квантованной провідності, як правило, дещо менше, ніж

, що може бути результатом впливу спінової поляризації носіїв в нульовому магнітному полі або порушення когерентності з причини як електрон-електронної взаємодії, так і розсіяння на домішкових центрах. Залишкові домішки, розподілені уздовж кордонів квантового дроту, є основою при створенні внутрішніх бар'єрів, які модулюють характеристики одновимірного транспорту. Потужність подібних бар'єрів регулюється шляхом зміни напруги на затворі, керуючого шириною квантового дроту, і особливо-за допомогою додаткових "пальчикових" затворів , що застосовуються для квантових точок між двома сусідніми бар'єрами.

Напруги Ug1 і Ug2 прикладаються до "пальчикових" затворам, що призначені для реалізації квантових точок. Положення рівня Фермі відповідає заповнення одновимірних підзон важких дірок .

2.3 Квантові нитки. Виготовлення квантових ниток

Технологи розробили декілька способів отримання квантових ниток. Цю структуру можна сформувати, наприклад, на межі поділу двох напівпровідників, де знаходиться двовимірний електронний газ. Це можна зробити, якщо нанести додаткові бар'єри, які обмежують рух електронів ще в одному або двох напрямках. Квантові нитки формуються в нижній точці V-подібною канавки, утвореної на напівпровідниковій підкладці. Якщо в основу цієї канавки осадити напівпровідник з меншою шириною забороненої зони, то електрони цього напівпровідника будуть замкнені у двох напрямках.

Розділ 3. Квантові точки

3.1 Технологія виготовлення квантових точок

Технологи розробили декілька способів отримання квантових точок. Цю структуру можна сформувати також як і квантові нитки, на межі поділу двох напівпровідників, де знаходиться двовимірний електронний газ, або нанести додаткові бар'єри, які обмежують рух електронів ще в одному або двох напрямках.

На рис. 5 показані квантові точки, створені на межі розділу арсеніду галію і арсеніду алюмінію-галію. У процесі росту в напівпровідник AlGaAs були введені додаткові домішкові атоми. Електрони з цих атомів йдуть в напівпровідник GaAs, тобто в область з меншою енергією. Але вони не можуть піти дуже далеко, тому що притягуються до покинутих ними атомам домішки, які отримали позитивний заряд. Практично всі електрони зосереджуються у самої гетерограниці з боку GaAs і утворюють двовимірний газ. Процес формування квантових точок починається з нанесення на поверхню AlGaAs ряду масок, кожна з яких має форму кола. Після цього проводиться глибоке травлення, при якому видаляється весь шар AlGaAs і частково шар GaAs (це видно на рис. 5).

Рис. 5. Квантові точки, сформовані в двовимірному електронному газі на кордоні двох напівпровідників

У результаті електрони опиняються у утворених циліндрах (на рис. 5 область, де знаходяться електрони, пофарбована в червоний колір). Діаметри циліндрів мають порядок 500 нм.