Смекни!
smekni.com

Динамика материальной точки и поступательного движения твердого тела (стр. 1 из 4)

Динамика материальной точки и поступательного движения твердого тела

Первый закон Ньютона. Масса. Сила

Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние. Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон Ньютона называют также законом инерции.

Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами отсчета.

Масса тела — физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса) и гравитационные (гравитационная масса) свойства. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10–12 их значения).

Итак, сила — это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Второй закон Ньютона

Второй закон Ньютона — основной закон динамики поступательного движения — от­вечает на вопрос, как изменяется механическое движение материальной точки (тела) под действием приложенных к ней сил.

а ~ F = const). (6.1)

а ~ 1/т (F = const). (6.2)

а = kF/m. (6.3)

В СИ коэффициент пропорциональности k= 1. Тогда

или

(6.4)

(6.5)

Векторная величина

(6.6)

численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называется импульсом (количеством движения) этой материаль­ной точки.

Подставляя (6.6) в (6.5), получим

(6.7)

Выражение (6.7) называется уравнением движения материальной точки.

Единица силы в СИ — ньютон (Н): 1 Н — сила, которая массе 1 кг сообщает ускорение 1 м/с2 в направлении действия силы:

1 Н = 1 кг×м/с2.

Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго.

В механике большое значение имеет принцип независимости действия сил: если на материальную точку действует одновременно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было.

Третий закон Ньютона

Взаимодействие между материальными точками (телами) определяется третьим зако­ном Ньютона.

F12 = – F21, (7.1)

Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек.

Силы трения

В меха­нике мы будем рассматривать различные силы: трения, упругости, тяготения.

Силы трения, которые препятствуют скольжению соприкасающихся тел друг относительно друга.

Внешним трением называется трение, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении.

В зависимости от характера их относительного движения говорят о трении скольжения, качения или верчения.

Внутренним трением называется трение между частями одного и того же тела, например между различными слоями жидкости или газа. Если тела скользят относительно друг друга и разделены прослойкой вязкой жидкости (смазки), то трение происходит в слое смазки. В таком случае говорят о гидродинамическом трении (слой смазки достаточно толстый) и граничном трении (толщина смазоч­ной прослойки »0,1 мкм и меньше).

Сила трения скольжения Fтр пропорциональна силе N нормального давления, с которой одно тело действует на другое:

Fтр = f N ,

где f — коэффициент трения скольжения, зависящий от свойств соприкасающихся поверхностей.

В пре­дельном случае (начало скольжения тела) F=Fтр. или Psin a0 = f N = f P cos a0, откуда

f = tga0.

Для гладких поверхностей определенную роль начинает играть межмолекулярное притяжение. Для них применяется закон трения скольжения

Fтр = f ист (N + Sp0),

где р0 добавочное давление, обусловленное силами межмолекулярного притяжения, которые быстро уменьшаются с увеличением расстояния между частицами; S — пло­щадь контакта между телами; fист — истинный коэффициент трения скольжения.

Радикальным способом уменьшения силы трения является замена трения скольже­ния трением качения (шариковые и роликовые подшипники и т. д.). Сила трения качения определяется по закону, установленному Кулоном:

Fтр=fк N/r, (8.1)

где r — радиус катящегося тела; fк — коэффициент трения качения, имеющий размер­ность dim fк =L. Из (8.1) следует, что сила трения качения обратно пропорциональна радиусу катящегося тела.

Закон сохранения импульса. Центр масс

Совокуп­ность материальных точек (тел), рассматриваемых как единое целое, называется механической системой. Силы взаимодействия между материальными точками механичес­кой системы называются — внутренними. Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними. Механическая система тел, на которую не действуют внешние силы, называется замкнутой (или изолированной). Если мы имеем механическую систему, состоящую из многих тел, то, согласно третьему закону Ньютона, силы, действующие между этими телами, будут равны и проти­воположно направлены, т. е. геометрическая сумма внутренних сил равна нулю.

Запишем второй закон Ньютона для каждого из n тел механической системы:

Складывая почленно эти уравнения, получаем

Но так как геометрическая сумма внутренних сил механической системы по третьему закону Ньютона равна нулю, то

или

(9.1)

где

— импульс системы. Таким образом, производная по времени от им­пульса механической системы равна геометрической сумме внешних сил, действующих на систему.

В случае отсутствия внешних сил (рассматриваем замкнутую систему)

Последнее выражение и является законом сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Эксперименты доказывают, что он выпол­няется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер, т. е. закон сохранения импуль­са — фундаментальный закон природы.

Закон сохранения импульса является следствием определенного свойства симмет­рии пространства — его однородности. Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.

Центром масс (или центром инерции) системы материальных точек называется воображаемая точка С, положение которой характеризует распределение массы этой системы. Ее ра­диус-вектор равен

где mi и ri — соответственно масса и радиус-вектор i-й материальной точки; n — число материальных точек в системе;

– масса системы. Скорость центра масс

Учитывая, что pi = mivi , a

есть импульс р системы, можно написать

(9.2)

т. е. импульс системы равен произведению массы системы на скорость ее центра масс.

Подставив выражение (9.2) в уравнение (9.1), получим

(9.3)