Смекни!
smekni.com

Динамика материальной точки и поступательного движения твердого тела (стр. 3 из 4)

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

Потенциальная энергия системы является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам.

Полная механическая энергия системы — энергия механического движения и вза­имодействия:

т. е. равна сумме кинетической и потенциальной энергий.

Закон сохранения энергии

Рассмотрим систему материальных точек массами m1, m2,..., mn, движущихся со скоростями v1, v2,..., vn. Пусть

,
,...,
— равнодействующие внутренних консер­вативных сил, действующих на каждую из этих точек, a F1, F2, ..., Fn — равнодейст­вующие внешних сил, которые также будем считать консервативными. Кроме того, будем считать, что на материальные точки действуют еще и внешние неконсервативные силы; равнодействующие этих сил, действующих на каждую из материальных точек, обозначим f1, f2, ..., fn. При v<<c массы материальных точек постоянны и уравнения второго закона Ньютона для этих точек следующие:

Двигаясь под действием сил, точки системы за интервал времени dt совершают перемещения, соответственно равные dr1, dr2, ..., drn. Умножим каждое из уравнений скалярно на соответствующее перемещение и, учитывая, что dri==vi dt, получим

Сложив эти уравнения, получим

(13.1)

Первый член левой части равенства (13.1)

где dT приращение кинетической энергии системы. Второй член

равен элементарной работе внутренних и внешних консервативных сил, взятой со знаком минус, т. е. равен элементарному приращению потенциальной энергии dП системы (см. (12.2)).

Правая часть равенства (13.1) задает работу внешних неконсервативных сил, дейст­вующих на систему. Таким образом, имеем

(13.2)

При переходе системы из состояния 1 в какое-либо состояние 2

т. е. изменение полной механической энергии системы при переходе из одного состоя­ния в другое равно работе, совершенной при этом внешними неконсервативными силами. Если внешние неконсервативные силы отсутствуют, то из (13.2) следует, что

d (T+П) = 0,

откуда

(13.3)

т. е. полная механическая энергия системы сохраняется постоянной. Выражение (13.3) представляет собой закон сохранение механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия со­храняется, т. е. не изменяется со временем.

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется.

Закон сохранения механической энергии связан с однородностью времени. Однород­ность времени проявляется в том, что физические законы инвариантны относительно выбора начала отсчета времени.

Существует еще один вид систем — диссипативные системы, в которых механичес­кая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии. Этот процесс получил название диссипации (или рассеяния) энергии. Строго говоря, все системы в природе являются диссипативными.

Закон сохранения и превращения энер­гии — фундаментальный закон природы, он справедлив как для систем макроскопичес­ких тел, так и для систем микротел.

Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом и заключается физическая сущность закона сохранения и превращения энергии — сущность неуничтожимости материи и ее движения.

Графическом представление энергии

График зависимости потенциальной энергии от некоторого аргумента назы­вается потенциальной кривой. Анализ потенциальных кривых позволяет определить характер движения тела.

Будем рассматривать только консервативные системы.

Потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли,

П (h)=mgh.

рис 15

Кинетическая энергия Т задается ординатой между графиком П(h) и горизон­тальной прямой ЕЕ. Из приведенного графика можно найти скорость тела на высоте h:

откуда

Зависимость потенциальной энергии упругой деформации П=кх2/2 от деформации х имеет вид параболы (рис. 16), где график заданной полной энергии тела Е — прямая, параллельная оси абсцисс х, а значения Т и П определяются так же, как на рис. 15. Из рис. 16 следует, что с возрастанием деформации х потенциальная энергия тела воз­растает, а кинетическая — уменьшается.

Из анализа графика на рис. 16 вытекает, что при полной энергии тела, равной Е, тело не может сместиться правее хmax и левее –хmax, так как кинетическая энергия не может быть отрицательной и, следовательно, потенциальная энергия не может быть больше полной энергии. В таком случае говорят, что тело находится в потенциальной яме с координатами – хmax £ x £ хmax.

В общем случае потенциальная кривая может иметь довольно сложный вид, например с несколькими чередующимися максимумами и минимумами (рис. 17). Проанализируем эту потенциальную кривую. Если Е — заданная полная энергия частицы, то частица может находиться только там, где П(х) £ Е, т. е. в областях I и III. Переходить из области I в III и обратно частица не может, так как ей препятствует потенциальный барьер CDG, ширина которого равна интервалу значе­ний х, при которых E < П, а его высота определяется разностью ПmахE. Для того чтобы частица смогла преодолеть потенциальный барьер, ей необходимо сообщить дополнительную энергию, равную высоте барьера или превышающую ее. В области I частица с полной энергией Е оказывается «запертой» в потенциальной яме AВС и совершает колебания между точками с координатами хA и хC.

В точке В с координатой х0 (рис. 17) потенциальная энергия частицы минимальна. Так как действующая на частицу сила (см. § 12)

(П — функция только одной координаты), а условие минимума потенциальной энергии
, то в точке В —Fx = 0. При смещении частицы из положения х0 (и влево и вправо) она испытывает действие возвращающей силы, поэтому положение х0 является положением устойчивого равновесия. Указанные условия выполняются и для точки
(для Пmax). Однако эта точка соответствует положению неустойчивого равновесия, так как при смещении частицы из положения
появляется сила, стремящаяся удалить ее от этого положения.

Удар абсолютно упругих и неупругих тел

Удар (или соударение)—это столкновение двух или более тел, при котором взаимодействие длится очень короткое время.

рис 16

Тела во время удара претерпевают деформацию. Сущность удара заключается в том, что кинетическая энергия относительного движения соударяющихся тел на короткое время преобразуется в энергию упругой деформации. Отношение нормальных составляющих относительной скорости тел после и да удара называется коэффициентом восстановления e:

Если для сталкивающихся тел e=0, то такие тела называются абсолютно неупругими, если e=1 — абсолютно упругими.

Прямая, проходящая через точку соприкосновения тел и нормальная к поверхности их соприкосновения, называется линией удара. Удар называется центральным, если тела до удара движутся вдоль прямой, проходящей через их центры масс. Мы будем рассматривать только центральные абсолютно упругие и абсолютно неупругие удары.