Задание.
Дано:
; ; ;Определить силу Q
Решение
Составим уравнение работ, выражающее принцип возможных перемещений:
Уравнение работ, выражающее принцип возможных перемещений:
(1)Скорость точки А равна скорости точки B
Тогда
Перемещение груза Q
Подставив в уравнение (1) выражения возможных перемещений точек системы, получим
Откуда
X=C2t2+C1t+C0
При t=0 x0=8
=6t2=4 x2=40 см
X0=C2t2+C1t+C0
8=0+0+C0
C0=8
V=x=2C2t+C1
6=0+C1
C1=6
X2=C2t22+C1t2+C0
40=C2 *42+6*4+8
40-32=C2*42
8=C2* 14
C2=0,5
2) При t=t1, t1=2
C0=x0
C1=V0
C2=x2-C1t-C0/t2
3)C0=8
C1=6
C2=0,5
X=0,5t21+6t1+8
=V=t+6a=
=1V=r2
2R2
2=R3 3 3=V*R2/(r2*R3)=100(t+6)/60*75=0,02(t+6)Vm=r3*
3=75*0,177=13,3atm=r3
=0,02tatm=R3
=75*0,02t=1,6tanm=R3
23=75*0,02(t+6)=1,6(t+6)2a=
Вариант 3 Д1
Дано:
Определить и .Решение
m
=1) m
=OZ: m
= -Q+R+Psin = ; P=mg; R=0,5 ;m
= -Q+0,5 +mg sin | :m = - + +g sin = = = 104 ==
н.у:
=10 м/c; l=4;С=
= 2,16 = = 4 м/c2) m
=OY: N=Pcos
=OX: m
= = = = | :m = = = = - =0,375cos2 -10,2t+Cн.у: t=0;
=4 м/с;C
= 4-0,375=3,625 =0,375cos2 -10,2t+3,625 ; =0,375cos2t-10,2t+3,625 =x=0,2sin2t-5,1
+3,625t+C