для алмазного конуса
(3)для шарика
(4)5. Перед началом испытания необходимо выбрать шкалу измерения, т.е. нагрузку, шкалу отсчета и индентор (шарик или конус). Шкалы А и С применяет для измерения закаленной стали, причем, когда требуется измерить твердость в поверхностном слое, например, после химико-термической обработки, после закалки ТВЧ, нагрузку снижают до 500 Н, т.е. использует для измерения шкалу А. Для определения твердости отожженной и нормализованной стали применяют шкалу В, нагрузку 1000 Н. Дня цветных металлов, имеющих малую твердость, измерения проводят по шкале F. Нагрузка в этом случае снижена до 500 Н, чтобы уменьшить глубину проникновения стального шарика.
6. Поверхность испытуемого образца должна быть очищена шлифовкой от окалины и других посторонних веществ.
7. Перпендикулярность приложения нагрузки обеспечивается за счет создания параллельности опорных поверхностей образца.
8. Минимальная толщина образца должна бить не меньше восьмикратной глубины внедрения наконечника после снятия основной нагрузки. На обратной стороне образца не должно быть заметно после измерения твердости следов деформации. Расстояние от края образца или между соседними отпечатками должно быть не менее 3 мм.
9. Отсчет результатов измерения твердости производится в целых делениях шкалы индикатора с точностью 0,5 единицы шкалы. За число твердости принимается результат отдельного измерения. Причем на каждом образце должно быть произведено не менее трех измерений.
Порядок измерения твердости на приборе Роквелла
После подготовки поверхности образца и выбора шкалы устанавливается соответствующая нагрузка и индентор (шарик или алмазный конус). Образец помещают на столик прибора и при помощи маховичка приводят в соприкосновение с наконечником, создавая предварительную нагрузку в 100 Н, что отмечается на циферблате установкой маленькой стрелки против красной точки. При этом большая стрелка должна занять вертикальное положение, указывая вверх с отклонением ±5 делений шкалы от вертикали. Если отклонение стрелки превышает 5 делений, предварительная нагрузка должна быть снята, а измерение твердости произведено в другой точке образца.
Затем совмещает большую стрелку с нулем черной шкалы (независимо от выбранной шкалы измерения) и нажатием на рычаг дают основную нагрузку.
После полной остановки движения стрелки (через 2–3 с) производится отсчет твердости по шкале индикатора. Необходимо помнить, что при измерении алмазным конусом отсчет твердости производится по черной шкале, а при измерении стальным шариком – по красной шкале. Несмотря на ряд недостатков метода Роквелла: условность величины определяемой твердости, малая точность измерения этот метод широко применяется для массового контроля. Причиной этого является ряд достоинств метода:
1. Быстрое определение твердости благодаря автоматизации приборов.
2. Возможность определения твердости материалов с НВ > 500 ед.
3. Возможность измерения твердости на малых и тонких образцах.
Твердость по Роквеллу HRA, HRB, HRC, HRF может быть переведена в твердость по Бринеллю при помощи таблицы (см. табл. 4), составленной на основании экспериментальных данных
Метод Виккерса
При измерении твердости по Виккерсу согласно ГОСТ 2999 – 59 в испытуемый металл вдавливается четырехгранная алмазная пирамида с углом при вершине 135°. Для испытания могут применяться нагрузки 50, 100, 200, 300, 500, 1000 и 1200 Н. Отпечаток получается в виде квадрата. При помощи микроскопа, находящегося на приборе, измеряется диагональ отпечатка. Твердость по Виккерсу HV определяют как удельное давление, приходящееся на единицу поверхности отпечатка Н/м2
(5)где Р – нагрузка на пирамиду, Н;
d – длина диагонали отпечатка, мм2.
Числа твердости по Бринеллю и Виккерсу имеют одинаковую размерность, а для металлов с твердостью до 450 ед. они одинаковы.
Измерение твердости алмазной пирамидой дает более точные значения для металлов с высокой твердостью, чем измерения шариком или конусом, так как диагонали отпечатка достаточно велики даже при малой глубине отпечатка. При вдавливании пирамиды соотношение между диагоналями получающегося отпечатка при изменении нагрузки остается постоянным, что позволяет в широких пределах менять нагрузку. Величину нагрузки выбирают в зависимости от целей исследования, толщины и твердости исследуемого образца. Продолжительность выдержки под нагрузкой составляет: для черных металлов 10–15 с, для цветных металлов 30–60 с.
Прибор Виккерса (рис.2) снабжен рычажным устройством 1 для нагружения алмазной пирамиды 5, специальным микроскопом 6 для измерения диагоналей отпечатка, а также грузовым приводом 7.
Поверхность образцов для определения твердости по Виккерсу предварительно тщательно отшлифовать наждачной бумагой тонкого номера или отполировать. Толщина исследуемого образца должна быть не меньше, чем 1,5 диагонали отпечатка.
На приборе Виккерса можно измерять твердость мягких металлов и очень твердых сплавов и, кроме того, твердость в тонких поверхностных слоях, например при обезуглероживании, поверхностном наклепе, химико-термической обработке и т.д.
Однако каждое определение по Виккерсу занимает сравнительно много времени и требует тщательной подготовки поверхности образца, что является основным недостатком этого метода, препятствующим широкому применению его в цеховых условиях.
Порядок измерения твердости по Виккерсу
1. Определяют необходимую величину нагрузки в зависимости от материала и Форму испытуемого изделия, пользуясь таблицей 5.
2. Образец помещается на столике 4, установленном на винте 3, который перемещается вращением маховичка 2 до тех пор, пока не произойдет соприкосновение алмазной пирамида о поверхность образца.
3. Включается рукоятка 1, и нагрузка системой рычагов передается на образец.
4. Отводят изделие от соприкосновения с алмазным наконечником поворотом маховика против часовой стрелки и, поворачивая головку микроскопа вправо до упора, совмещает объектив микроскопа с отпечатком.
5. Отпечаток фокусируют и измеряют величину диагоналей. Для этого вращением винта подводят к краю диагонали нулевую отметку шкалы, а затем, вращая микровинт, подводят к противоположному концу диагонали подвижную линию. При отсчете пользуются шкалой микроскопа, одно деление которой равно 0,1 мм, и микровинтом, одно деление которого на лимбе соответствует 0,001 мм при увеличении в 100 раз. Для измерения второй диагонали поворачивают головку микроскопа на 90° – по часовой стрелке. После замера двух диагоналей определяет среднее значение d.
6. Пользуясь таблицей, по значению d определяют твердость по Виккерсу (HV) или находят ее по формуле (5).
Метод измерения микротвердости
При определении микротвердости четырехгранная алмазная пирамида (с углом между противоположными гранями при вершине 135°) вдавливается в испытуемый материал под очень небольшой нагрузкой от 0,05 до 5 Н. Число твердости выражается в величинах твердости Н и определяется по формуле (5).
Числа твердости согласно ГОСТ 9450 – 60 обозначают символом Н с указанием в индексе величины нагрузки в граммах (например, H50 = 220 означает, что число микротвердости 220 получено при нагрузке 0,5 Н).
Испытание на микротвердость применяют для контроля качества материала очень мелких деталей, а также для определения твердости структурных составлявших, твердости покрытий и весьма тонких поверхностных слоев. Поверхность образца для определения микротвердости подготавливают так же, как и для микроисследования. Полирование рекомендуется электролитическое во избежание наклепа в тонком поверхностном слое. Для определения микротвердости применяют прибор ПМТ – 3. Это вертикальный микроскоп 1 с нижним положением столика, который
Рис. 2. Прибор Виккерса
Рис. 3. Общий вид прибора ПМТ – 3
Это вертикальный микроскоп 1 с нижним положением столика, который имеет два сменных объектива с увеличением в 487 и 130 раз (обычно пользуются увеличением в 487) и окуляр – микрометр 4 для измерения диагонали отпечатков. Вращением столика 2 выбранное место на шлифе 3 подводят под индентор – пирамиду. Принцип измерения твердости такой же, как и по Виккерсу, только пирамида отличается более высокой точностью изготовления. На рис. 3 показан общий вид прибора ПМТ – 3.
Выбор нагрузки зависит от задачи измерения. Центр отпечатка должен быть удален от края шлифа или от края соседнего отпечатка не менее чем на две диагонали отпечатка. Если отпечаток получен слишком близко к краю, то вдавливание индентора облегчается и поэтому значение твердости оказывается заниженным. Если первый отпечаток расположен слишком близко от второго, то второй отпечаток будет находиться в зоне, уже наклепанной от первого вдавливания, поэтому твердость получается завышенной.
При малой нагрузке велика относительная погрешность в измерении отпечатка и сильнее сказывается качество шлифа, поэтому желательно брать наибольшую нагрузку.
Вместо определения числа твердости по формуле обычно пользуется таблицами, рассчитанными для нагрузок 0,2; 0,5; 1 и 2 Н. Но если нужно измерить твердость отдельного зерна, приходится снижать нагрузку, пока отпечаток не окажется настолько малым, чтобы до краев зерна оставалось не менее двух диагоналей. Даже отпечаток, далеко отстоящий от видимой границы зерна, может давать завышенное (или заниженное) значение твердости из–за того, что под ним на небольшой глубине под поверхностью шлифа залегает другая фаза (более твердая или более мягкая). Индентор "упирается" в нее или, наоборот, "проваливается" сквозь твердую корку в мягкую подложку. Поэтому разброс измеренных значений микротвердости, как правило, гораздо больше, чем при обычных измерениях твердости. Измерения микротвердости имеют ценность только при правильной статистической обработке диагонального числа размеров.