Смекни!
smekni.com

Теорія електропровідності напівпровідників та твердих тіл (стр. 3 из 4)

Всі попередньо розглянуті відносно до руху електрона в якомусь даному направленні в кристалі. Для будь якого іншого направлення міжатомна відстань

буде іншою, а відповідно, границі енергетичної зони будуть іншими

.

Завдяки цьому в кристалі, границі дозволених зон для будь яких напрямів, як правило не співпадають. Можливо в кристалі і повне перекриття дозволених енергетичних зон для одного напряму з забороненими енергетичними зонами для інших напрямів. Таке перекриття зон спостерігається, окремо, у металів, які належать до II групи періодичної системи елементів Д. І. Менделєєва. Ширина енергетичної зони у трьохмірному кристалі будуть залежити від будови кристалу (від

), а кількість енергетичних рівнів в зоні дорівнює числу атомів в кристалі.

Для зображення енергетичних зон кристалу користуються звичайно спрощеною енергетичною схемою.

Так як багато процесів в кристалі (електричні, магнітні, оптичні) пояснюються станом валентних електронів, то на схемі зображують тільки дві дозволені енергетичні зони: валентну зону, яка відповідає нормальним (не збудженим) станом валентних електронів, та найближчу до неї зони збуджених станів цих електронів – збуджену зону, або зону провідності. Називається ця зона, зоною провідності тому, що у відсутності зовнішніх збуджень в ній не має електронів, а коли, отримавши зовні необхідну енергію в цю зону, перейде електрон, то зможе в цій зоні вільно змінювати свою енергію, рухаючись під дією зовнішнього електричного поля, тобто приймати участь у провідності.

Поведінка електронів в заповненій і незаповненій зонах суттєво відрізняються. Зовнішнє енергетичне поле в кристалі може викликати зміну в русі електронів не повністю заповненої зони і не змінює рух електронів в зоні, яка заповнена повністю. Пояснити це можливо наступним чином. Зміна руху електрона пов’язано із зміною його енергетичного стану, а останнє можливо тоді, коли електрон знаходиться у зоні , де є вільні енергетичні рівні, тобто в зоні, яка заповнена не повністю. У повністю заповненій енергетичній зоні немає вільних енергетичних рівнів і тому електрон не змінить свого руху під дією зовнішнього поля. Перейти з одної зони в іншу під дією електричного поля електрон також не може.

Зона теорія пояснює ділення речовин на провідники, напівпровідники і діелектрики перед тим як заповнити валентну зону кристала електронами. Якщо валентна зона кристалу заповнена не повністю , то кристал є провідником. Однак провідником може бути і такий кристал, в якому валентна зона заповнена повністю. При утворенні енергетичних зон в кристалі можливе перекриття валентної зони та збуджених зон. В цьому випадку об’єднана зона стане заповненою не повністю і кристал стане провідником.

Якщо в кристалі повністю заповнена валентна зона відділена від зони провідності забороненої зони, то у відсутності зовнішнього збудження (нагрівання, опромінення та інше) кристал не може проводити електричний струм. Умовно прийнято вважати що напівпровідниками речовини, ширина забороненої в яких менш трьох електронвольт. Діелектриками вважають речовини з шириною забороненої зони більш трьох електронвольт.


2. Теорія електропровідності напівпровідників

Провідність будь якого провідника пропорційна концентрації вільних носіїв заряду в ньому та їх рухомості. Відповідно, температурний хід провідності напівпровідника визначається температурою залежності концентрації та рухомості носіїв в ньому. Температурна залежність концентрації носіїв заряду виражаються наступними формулами

.

; (9)

.

Рухомість вільних носіїв в кристалі визначається розсіянням електронних хвиль на неоднорідностях кристалічної гранки.

У кристалі ці неоднорідності можуть бути лише двох видів: дефекти кристалічної гранки (атоми домішків, відхилення від стехіометрії, дислокації, тріщини, границі кристалічних зерен і тому подібне) і флуктуаційні неоднорідності, які виникають при теплових коливаннях гранки. Одні і ти самі неоднорідності по різному проявляють під час розсіяння носіїв заряду в металі та в напівпровіднику. Так як в металі швидкість електронів завдяки виродженню на порядок вища, чим у напівпровіднику, довжина електронної хвилі в металі відповідно на порядок менша, ніж у напівпровідникові. Неоднорідність атомних розмірів викликають у металі значне розсіяння, але в той час як у напівпровідникові це розсіяння дуже мале.

У атомних напівпровідникових кристалів теплове розсіяння значне при відносно високих температурах. При низьких ж температурах домінує розсіяння на сумішах. При наявності обох механізмів розсіяння результуюча рухомість

може бути представлена у вигляді

,

де

- рухомість носіїв заряду при розсіянні тільки на домішках,
- рухомість носіїв заряду при розсіянні тільки на теплових коливаннях.

Ці дві складові рухомості носіїв (

та
) змінюються по-різному в залежності від температури. Теоретичний розрахунок показує, що

,

Таким чином, температурний хід рухомості носіїв заряду може бути представлений у вигляді

(10)

При низьких температурах домінує перший член, при великих – другий. Залежність (9) напівлогарифмічної системи координат зображена на малюнку 1.

Мал. 1

Положення максимуму на кривій залежить концентрації дефектів у гранці: із збільшенням концентрації дефектів максимум змішується в бік більш високих температур. В таблиці 1 наведені основні величини які характеризують напівпровідники: ширина забороненої зони

і рухомість носіїв заряду
та
. Всі ці величини приведені для кімнатної температури.
Напівпровідник Ширина забороненої зони
,
Рухомість
Електронів
Дірок

Знаючи температуру залежності концентрації вільних носіїв заряду з виразів (9) і їх рухомості (10), можна стверджувати, що температурний хід провідності напівпровідника визначається – експоненціальним множником (9), а тому питома провідність напівпровідника може бути вироджена наступною формулою: