Графические задачи позволяют наглядно наиболее ярко и доходчиво выражать функциональные зависимости между величинами, характеризующими процессы, протекающие в окружающей нас природе и технике (особенно при изучении различных видов движения в механике, газовых законов). В некоторых случаях только с помощью графиков могут быть представлены процессы, которые только на более поздних стадиях обучения физике можно выразить аналитически (например, работа переменной силы). (Примеры: 5. Тело, имеющее начальную скорость 50 м/с, двигалось прямолинейно с постоянным ускорением и через 10с остановилось. Построить график скорости тела и, используя этот график, найти перемещение и путь, пройденные телом. 6.Начертить графики изотермического расширения идеального газа данной массы в координатах p, V; T,V; r, p; r, T, где T,V, r, p — соответственно температура, объем, плотность и давление газа.)
Экспериментальные — задачи, данные, для решения которых получают из опыта при демонстрации, или же при выполнении самостоятельного эксперимента. При решении этих задач учащиеся проявляют особую активность и самостоятельность. Преимущество экспериментальных задач перед текстовыми заключается в том, что первые не могут быть решены формально, без достаточного осмысления физического процесса. (Так, например, при изучении физического прибора реостата с помощью экспериментальных задач учащиеся уясняют разницу в использовании реостата как прибора, регулирующего ток в цепи, и в качестве делителя напряжения (потенциометра).
Задачи с неполными данными чаще всего встречаются в жизни, когда недостающие сведения приходится добывать из таблиц, справочников, либо путем измерений. Решение задач этого типа способствует формированию навыков самостоятельной работы учащихся со справочной литературой. (Примеры: 7. Какой максимальный груз может выдержать алюминиевая (медная, стальная и т.п.) проволока при заданном сечении? 8. При какой наименьшей длине обрывается от собственного веса стальная проволока, подвешенная за один конец?)
При решении задач используют различные методы:
Аналитический, который заключается в расчленении сложной задачи на ряд простых (анализ), при этом решение начинается с отыскания закономерности, которая дает непосредственный ответ на вопрос задачи. Окончательная расчетная форма получается путем синтеза ряда частных закономерностей.
Синтетический, когда решение задачи начинается не с искомой величины, а с величин, которые могут быть найдены непосредственно из условия задачи. Решение развертывается постепенно, пока в последнюю формулу не войдет искомая величина. При таком подходе решение задачи опять же надо начинать с анализа явления.
Структура процесса решения задачи:
· ознакомление с условием задачи;
· составление плана решения задачи;
· осуществление решения;
· проверка правильности решения задачи;
Исходя из приведенного выше, можно выделить следующие этапы формирования у учащихся умения решать задачи по физике:
1. Анализ. Условие задачи представляет собой код. На первом этапе происходит перекодирование информации — краткая запись условия задачи, рисунки, чертежи.
2. Выявление структуры процесса решения задачи. Основное внимание следует уделить овладению учащимися общими операциями по решению физической задачи любого типа. Перечислим указанные операции:
— выбор рациональных способов решения задачи;
— выполнение приближенных вычислений;
— выполнение действий с именованными величинами;
— преобразования единиц величин;
— применение различных способов проверки;
— анализ результатов.
Операции отрабатываются в процессе решения конкретных задач.
3. Усвоение общей структуры решения класса задач по конкретной теме, на применение конкретных физических законов. Усвоенные ранее операции выстраиваются в стройную систему, которую можно рассматривать как предписание алгоритмического типа для решения задач по определенным темам.
4. Предписание алгоритмического типа для решения задач определенного вида (качественные, количественные, экспериментальные и др.) по конкретным темам и на конкретные законы обобщаются в общие предписания алгоритмического типа для решения задач этого вида.
5. Происходит дальнейшее обобщение предписаний алгоритмического типа, при этом вырабатывается общее предписание алгоритмического типа для решения любой физической задачи.
Этапы по решению физических задач:
1 этап. Изучите условия, сделайте краткую запись данных при помощи принятых обозначений. Изучить условие – значит, постараться представить себе явление или процесс, который описан в содержании задачи.
2 этап. Подробно всесторонне рассмотрите физические явления и процессы, о которых идет речь в задаче. Выявите и рассмотрите начальное и конечное состояние процесса и параметры, их характеризующие. Это поможет вам уточнить условие, поставить соответствующие индексы к буквенным обозначениям.
3 этап. Найти (извлечь из памяти) ту закономерность - закон, формулу, правило - которая описывает данное явление или процесс.
4 этап. Сделайте проверку, соответствует ли число полученных уравнений числу неизвестных; все ли величины, входящие в расчетную формулу, определены. Проверьте соответствие размерности искомой величины по расчетной формуле.
5 этап. Вычислите значение искомой величины, дайте анализ полученного ответа.
Важно, чтобы ученикам на первых этапах обучения физике были сообщены требования, предъявляемые к решению задач: обязательная запись (если иначе не указано в задаче) данных и полученного результата в единицах СИ; получение расчетной формулы в общем виде (то есть без промежуточных расчетов); запись ответа; аккуратная последовательную запись всей задачи с краткими комментариями
Критерии сформированности умения решать физические задачи.
1. Знание основных операций, из которых складывается процесс решения задачи.
2. Усвоение структуры совокупности операций.
3. Перенос усвоенного метода решения задач по одному разделу на решение задач по другим разделам и предметам.
Итак, физические задачи являются важной составной частью процесса обучения физике. Успех обучения решению задач в значительной мере зависит от того, пользуется ли учитель обобщенным методом решения задач, или каждая частная задача решается своим методом. В последнее время именно по умению решать физические задачи оценивается знание учениками физики. [6]
§2 Сущность эвристического подхода в решении задач по физике
2.1 Понятие эвристики и эвристического обучения. Эвристика (от греч. heurisko - нахожу) - методология научногоисследования, а также методика обучения, основанная на открытии илидогадке. 1) В Древней Греции - система обучения путем наводящих вопросов; 2) Совокупность логических приемов и методических правил теоретического исследования и отыскания истины; метод обучения и отыскания истины; метод обучения, способствующий развитию находчивости, активности. Большой Энциклопедический Словарь, в одной из трех трактовок эвристики, определил ее так: «Восходящий к Сократу метод обучения (т.н. сократические беседы)». Метод Сократа развивался и совершенствовался в трудах великихмыслителей и педагогов. Различные аспекты эвристического обучения нашли свое отражение в трудах Я.А. Коменского, И.Г. Песталоцци, Дж. Дьюи и др. Ян Амос Коменский писал, что правильно обучать – это не значит вбивать в головы какую-то полезную информацию, а значит «раскрывать способности понимать вещи, чтобы именно из этой способности, точно из живого источника, потекли ручейки, ручейки живой мысли». Считается, что сложность учительского труда в том, чтобы найти путь ккаждому ученику, создать условия для развития способностей заложенных в каждом. А это наиболее возможно тогда, когда при обучении используется эвристический метод. Несмотря на огромный вклад в науку советскими учителями-педагогами эвристический метод обучения практически не затрагивался. Анализ различных литературных источников показал, что большинство практиков и теоретиков образования относят эвристику к одному из методов или приемов обучения. Нередко эвристику относят к одному из методов обучения, эти методы так и называют «эвристики». В теории и практике обучения 80-х годов эвристике часто приписывались несвойственные ей функции сообщения новых знаний, к примеру, Т.А. Ильина писала: «В педагогике распространен еще один термин, характеризующий беседу по сообщению новых знаний, - эвристическая беседа». Теперь мы понимаем, что это мнение было ошибочно. [5] Идеи об эвристическом обучении в современной дидактике разрабатывались в трудах А.В. Хуторского, М.М. Левиной и многих других. Развитие эвристических подходов к обучению в нашей стране не былосвязано с инновационными дидактическими системами; эвристический аспект обучения более всего оказался присущ проблемному и развивающему обучению. На самом деле эвристическое обучение имеет свою специфику, которое отличает его как от проблемного, так и от развивающего обучения. Эвристическое обучение также тесно связано с личностно-ориентированным обучением.[13]Основные функции эвристического обучения: -самостоятельное усвоение знаний и способов действий;-развитие творческого мышления, перенос знаний и умений в незнакомую ситуацию; -видение новой проблемы в традиционной ситуации; -видение новых признаков изучаемого объекта; -преобразование известных способов деятельности и самостоятельное создание новых; -обучение учащихся приемам активного познавательного общения; -развитие мотивации учения, мотивации достижения.«Эвристическое обучение отличается от развивающего и проблемного качественно новой задачей: развитием не только ученика, но и траектории его образования, включая развитие целей, технологий, содержания образования»[4]. Эвристический поход используется не только в педагогике, но и впсихологии, инженерии, физике, информатике, кибернетике, философии и других научных областях. Специалисты каждой из этих наук рассматривают эвристику со своих позиций, придают своеобразное толкование ее основным понятиям и положениям. Так, кибернетики считают, что эвристика - методы и способы, связанные с улучшением эффективности системы (человека или машины), решающей задачи. В последние годы к эвристике относят и те исследования представителей кибернетики, которые пытаются моделировать высшие проявления интеллекта. Психологи считают эвристику разделом психологии, изучающим творческое мышление. Педагоги считают эвристику наукой о средствах и методах решения задач. Философы термин "эвристический" приписывают таким правилам или утверждениям, которые способствуют открытию нового. Все же основой эвристики является психология, особенно тот ее раздел,который получил название психологии творческого, или продуктивного, мышления. Например, использование эвристических методов технического творчества (прямая и обратная мозговая атака, метод эвристических приемов и метод морфологического анализа и синтеза) в компьютерной инженерии позволяют развить творческое воображение и способности учащихся сделать первые шаги к изобретательству — созданию новых технических решений. Эвристические приемы как готовые схемы действия составляют объект эвристической логики, а реальный процесс эвристической деятельности - объект психологии. Но если эвристические приемы могут быть представлены в виде определенной логической схемы, т. е. могут быть описаны математическим языком, то эвристическая деятельность на современном этапе развития науки не имеет своего математического выражения. В эвристике как молодой, развивающейся науке не все понятия достаточно четко определены. Это, прежде всего, относится к понятию "эвристический метод". Многие исследователи понимают под ним определенный эффективный, но недостаточно надежный способ решения задач. Он позволяет ограничивать перебор вариантов решения, т. е. сокращать число вариантов, изучаемых перед тем, как выбрать окончательное решение. Понятно, что это определение понятия "эвристический метод" не может быть признано удовлетворительным,так как в нем представлена лишь внешняя характеристика явления, но нераскрыты существенные его черты. Чтобы раскрыть существо этого понятия, необходимо иметь в виду, чтосам термин "эвристический" применим к явлениям двоякого рода. Во-первых, можно рассмотреть как эвристическую деятельность человека, которая приводит к решению сложной, нестандартной задачи, во-вторых, эвристическими можно считать и специфические приемы, которые человек сформировал у себя в ходе решения одних задач и более или менее сознательно переносит на решение других задач. Долгое время основное внимание учителей было приковано к первойфункции методов - усвоению знаний. Вторая же их функция - развитиепознавательных способностей - оставалась в тени. В результате в школахсложился определенный тип учебного процесса, характеризующийся стремлением учителя преподнести все знания в готовом виде. Такая методика обучения приводит к тому, что познавательная деятельность учащихся приобретает односторонний воспроизводящий характер: главные усилия учащихся направлены на восприятие готовых знаний, их запоминание и последующее воспроизведение. Творческую ориентацию заявляют не так много учебных заведений, вРоссии таких заведений еще очень мало, хотя некоторые учителя все же пытаются работать по эвристическим технологиям и методикам, но уровень творчества, конечно, еще низок. Причиной этого в школах является гонка за требованиями, которые диктуют вузы. В результате более необходимым для учителей является "натаскивание" учеников под определённые, отнюдь не творческие требования.В результате - отчуждение образования от того, на что действительно способен ученик, которому приходится искать лазейки, чтобы "найти и сдать" контрольные нормативы, вместо того, чтобы уделить внимание тому, к чему у него действительно есть способности. Г.Г. Воробьёв подчеркивает: «Когда учитель не совсем уверен, что получит нужный ему ответ, он…дарит идею». Дарить – в данном случае означает, что… получивший не догадывается о дарении, полагая, что это его собственная идея. Как известно, свои идеи больше волнуют, увлекают и побуждают к самореализации». [8, 13] Эвристический метод обучения позволяет педагогу предоставить учащимся больше самостоятельности и творческого поиска. Проблема в том, что при разработке методики формирования творческих способностей посредством эвристического метода учитель должен учитывать: а) общий уровень развития ученического коллектива; б) возрастные особенности формирования креативной сферы; в) личностные особенности учащихся; г) специфические черты и особенности учебного предмета.Условия формирования творческих способностей: а) положительные мотивы учения; б) интерес к самостоятельной деятельности у учащихся; в) творческая активность; г) положительный микроклимат в коллективе; д) сильные эмоции; е) предоставление свободы выбора действий, вариативность работы.Принципы деятельности: а) креативность обучения (реализация творческих возможностей учителя и учащихся); б) опора на субъективный опыт учащихся (один из источников обучения); в) актуализация результатов обучения (применение на практикеприобретенных знаний, умений и навыков); г) индивидуализация и дифференциация обучения (индивидуальный и дифференцированный подход к учащимся); д) системность обучения; е) творческое взаимодействия учащихся и учителя в процессе обучения.Следовательно, задачами учителя будут выступать: а) постоянное пополнение запаса знаний учащихся по математике; б) развитие общеучебных умений и навыков; в) развитие креативного мышления; г) развитие творческой самостоятельности учеников; д) воспитание в процессе обучения в целом творческой личности. «Степень сложности задачи определяется числом существенныхвзаимосвязей в ее условии, числом опосредований и преобразований,приводящих к нахождению искомого»[8]. Зависит она и от уровнясамостоятельности учащихся при постановке и решении проблемы. Таковы некоторые более внешние, поддающиеся объективной оценкеусловия, определяющие эвристичность задач. Эвристическое мышление характеризуется высокой степенью новизны получаемого на его основе продукта, его оригинальностью. Это мышление появляется тогда, когда человек, попытавшись решить задачу на основе ее формально-логического анализа с прямым использованием ему известных способов, убеждается в бесплодности таких попыток и у него возникает потребность в новых знаниях, которые позволяют решить проблему: эта потребность и обеспечивает высокую активность решающего проблему субъекта. Эвристическая деятельность или эвристические процессы, хотя и включают в себя умственные операции в качестве важного своего компонента, вместе с тем обладают некоторой спецификой. Именно поэтому эвристическую деятельность следует рассматривать как такую разновидность человеческого мышления, которая создает новую систему действий или открывает неизвестные ранее закономерности окружающих человека объектов (или объектов изучаемой науки). Во многих работах о креативном мышлении основными его показателями считаются такие, которые отражают степень отклонения от привычного решения, преодоления барьеров прошлого опыта. С целью их выявления используются искусственные проблемы, предполагающие резкое столкновение имеющегося опыта с требованиями задачи, они предполагают необычные решения, зачастую нарушающие то, что диктуется опытом жизни. Мы считаем, что развитие творческого мышления у учащихся в процессе изучения ими физики является одной из актуальных задач, стоящих перед преподавателями физики в современной школе. Основным средством такого воспитания и развития математических способностей учащихся являются задачи. [10] При обучении физике на решение задач отводиться большая частьучебного времени. Отсюда напрашивается вывод, что учебное время, отводимое на решение задач в школе, используется неэффективно, а это отрицательно сказывается на качестве обучения физике в целом. Каждая предлагаемая для решения учащимся задача может служить многим конкретным целям обучения. И все же главная цель задач — развить творческое мышление учащихся, заинтересовать их физикой, привести к «открытию» физических фактов. Достичь этой цели с помощью одних стандартных задач невозможно, хотя стандартные задачи, безусловно, полезны и необходимы, если они даны вовремя и в нужном количестве. Мы считаем, что следует избегать большого числа стандартных задач, как на уроке, так и во внеурочной работе, так как в этом случае сильные ученики могут потерять интерес к физике. Ознакомление учащихся лишь со специальными способами решения отдельных типов задач создают, на наш взгляд, реальную опасность того, что учащиеся ограничатся усвоением одних шаблонных приемов и не приобретут умения самостоятельно решать незнакомые задачи («Мы такие задачи не решали»,— часто заявляют учащиеся, встретившись с задачей незнакомого типа). В системе задач школьного курса физики, безусловно, необходимызадачи, направленные на отработку того или иного физического навыка,задачи иллюстративного характера, тренировочные упражнения, выполняемые по образцу. Но не менее необходимы задачи, направленные на воспитание у учащихся устойчивого интереса к изучению физики, творческого отношения к учебной деятельности. Необходимы специальныеупражнения для обучения школьников способам самостоятельной деятельности, общим приемам решения задач, для овладения ими методами научного познания реальной действительности и приемам продуктивной умственной деятельности, которыми пользуются ученые-физики, решая ту или иную задачу. Осуществляя целенаправленное обучение школьников решению задач, с помощью специально подобранных упражнений, можно учить их наблюдать, пользоваться аналогией, индукцией, сравнениями, и делать соответствующие выводы. Необходимо, как мы считаем, прививать учащимся прочные навыки творческого мышления. В школьных учебниках физики (и не только ныне действующих) малозадач, с помощью которых можно показать учащимся роль наблюдения, аналогии, индукции, эксперимента. Эвристическая задача - лучший способ мгновенно возбудить внимание иучебный интерес, приблизить возможность открытия. Эвристические задачи могут быть предложены как для классной, так и для домашней работы, причем ученик должен иметь право выбора любого варианта задания. [8] 2.2. Характеристика эвристических методов (Педагогические приемы и методы на основе эвристики) Для выбора основания классификации методов эвристического обучения Хуторской А.В. обратился к основным видам эвристической образовательной деятельности, классифицировав их согласно этим видам – на оргдеятельностные, когнитивные и креативные. [13]. Когнитивные методы:- метод вживания, (с помощью чувственно-образных и мыслительных представлений человек пытается «переселиться» в изучаемый объект, как бы почувствовать и познать его изнутри);