Смекни!
smekni.com

Расч т тр хфазного трансформатора (стр. 1 из 2)

Министерство образования и науки РФ

Иркутский государственный технический университет

Институт информационных технологий

Кафедра электротехники и энергетических систем

КУРСОВАЯ РАБОТА

по дисциплине «Электротехника»

на тему: «Трехфазные трансформаторы»

Иркутск

2008


Дан трехфазный двухобмоточный трансформатор. Расшифруйте буквенно-цифровые обозначения исследуемого трансформатора. Необходимо выполнить следующие расчеты:

1. Определить параметры Т-образной схемы замещения трансформатора.

2. Начертить в масштабе полную векторную диаграмму трансформатора для активно-индуктивной нагрузки.

3. Рассчитать и построить зависимость коэффициента полезного действия от нагрузки

при значениях коэффициента нагрузки
, равных 0; 0,25; 0,75; 1,00 и 1,25 от номинального вторичного тока
. Определить максимальное значение КПД.

4. Определить изменение вторичного напряжения

.

5. Построить внешние характеристики трансформатора для значений тока, равных 0; 0,25; 0,50; 0,75; 1,00 и 1,25 от номинального вторичного тока

.

Цель задания – углубление теоретических знаний и приобретение практических навыков расчета параметров, характеристик и построения векторных диаграмм реальных трезфазных трансформаторов.

Примечание. При определении параметров трехфазного трансформатора и построении векторных диаграмм расчет ведется на одну фазу.

ТМ – 1000 / 35 – трехфазный трансформатор с естественной циркуляцией масла.

SН= 1000 кВ А – номинальная мощность трансформатора;

U= 35 кВ – номинальное напряжение первичной обмотки;

U= 6,3 кВ – номинальное напряжение вторичной обмотки;

UК = 6,5% - напряжение короткого замыкания;

Р0 = 2,750 кВт – потери активной мощности в режиме холостого хода;

РК = 12,20 кВт – потери активной мощности в режиме короткого замыкания;

I0 = 1,50% - ток холостого хода;

Cos φ2 = 0,8

Определение параметров схемы замещения трансформатора в режиме холостого хода

Для первичной обмотки примем соединение по схеме «звезда»; для вторичной обмотки примем соединение по схеме «треугольник».

Для определения параметров схемы замещения трансформатора рассчитаем:

а) номинальный ток трансформатора

I1H =

; I1H = 1000/(1,73*35)=16,5A;

б) фазное напряжение первичной обмотки:

при соединении по схеме “звезда”

U=

, U = 35 / √ 3 = 20, 2 кВ.

при соединении по схеме “треугольник”

U = U1H;

в) фазный ток холостого хода трансформатора

I = I1H

, I= 16,5 * 1,50 / 100 = 0,25 А;

где I0 – ток холостого хода,%;

г) мощность потерь холостого хода на фазу

P =

, Р= 2750 / 3 = 916,7 Вт,

где m – число фаз первичной обмотки трансформатора; принимаем m=3.

д) полное сопротивление ветви намагничивания схемы замещения трансформатора при холостом ходе согласно схеме рис. 1.

Z0 =
; Z0 = 20,2*103/ 0,25 = 80,8 кОм,

е) активное сопротивление ветви намагничивания

r0 =

; r0 = 916,7/ 0,252 = 14,67 кОм;

ж) реактивное сопротивление ветви намагничивания

х0 = √ Z0 – r0 ; x0 = √ 80,82 – 14,672 = 79,46 кОм = 79,46*103 Ом;

з) коэффициент трансформации трансформатора

k = U / U, k = 20,2*103 /6,3*103 = 3,2

Определение параметров схемы замещения трансформатора в режиме короткого замыкания

В опыте короткого замыкания вторичная обмотка трансформатора замкнута накоротко, а подводимое к первичной обмотке напряжение подбирается таким образом, чтобы ток обмотки трансформатора был равен номинальному. Схема замещения трансформатора в режиме короткого замыкания представлена на рис. 2.

Здесь суммарное значение активных сопротивлений (r1 + r2) обозначают r k и называют активным сопротивлением короткого замыкания, а (x1 + x2) индуктивным сопротивлением короткого замыкания x k.

Для определения параметров схемы замещения трансформатора рассчитаем:

а) фазное напряжение первичной обмотки U;

U = 20,2 кВ;

б) фазное напряжение короткого замыкания

UК.Ф = U

,

UК.Ф = 20,2 *103 *(6,5/ 100) = 1,31 кВ;

где UK – напряжение короткого замыкания,%;

в) полное сопротивление короткого замыкания

ZK =

, ZK = 1,31*103/ 16,5 = 79,39 Ом;

где IК – ток короткого замыкания, IK = I1H =

;

г) мощность короткого замыкания

PК.Ф =

; PК,Ф = 12,2*103/ 3 = 4,06 кВт;

д) активное сопротивление короткого замыкания

rK =

; rK = 4,06*103/ (16,5)2 = 14,91 Ом

е) индуктивное сопротивление короткого замыкания

xK =

; хК = √79,392 – 14,912 = 77,98 Ом

Обычно принимают схему замещения симметричной, полагая

r1

; x1
;

r2 = r2 * k2; x2 = x2 * k2,

где r1 – активное сопротивление первичной обмотки трансформатора;

x1 – индуктивное сопротивление первичной обмотки трансформатора, обусловленное магнитным потоком рассеянья

;

r2 – приведенное активное сопротивление вторичной обмотки трансформатора;

x2 – приведенное индуктивное сопротивление вторичной обмотки трансформатора, обусловленное магнитным потоком рассеянья

.

r1 ≈ r2 = 14,91 /2 = 7,46 Ом; x1 ≈ x2 = 77,98/ 2 = 38,99 Ом.

r2 = r2/ k2 = 7,46/ 3,22 =0,72 Ом; x2 = x2/ k2 = 38,99/ 3,22 = 3,8 Ом.

Построение векторной диаграммы

При построении векторной диаграммы воспользуемся Т – образной схемой замещения (рис. 3).

Векторная диаграмма является графическим выражением основных уравнений приведенного трансформатора:

Для построения векторной диаграммы трансформатора определим:

1) номинальный фазный ток вторичной обмотки трансформатора

; I= 1000*/ (3* 6,3) = 52,9 А;

2) приведенный вторичный ток

; I= 52,9 / 3,2 = 16,5 А;

3) приведенное вторичное напряжение фазы обмотки U = U k; U = 6,3*103 * 3,2 = 20160 В

4) угол магнитных потерь

; α = arctg(14,67*103/ 79,46*103) = 10,46o;

5) угол

, который определяется по заданному значению угла
путем графического построения;

6) падение напряжения в активном сопротивлении вторичной обмотки I2 r2, приведенное к первичной цепи;

I2 *r2 = 16,5*7,46 = 123,1 В;

7) падение напряжения в индуктивном сопротивлении вторичной обмотки I2 x2’, приведенное к первичной цепи;

I2*x2 = 16,5* 38,99 = 643,3 B;

8) падение напряжения в активном сопротивлении первичной обмотки I1 r1;

I1*r1 = 16,5*7,46 = 123,1 B;

9) падение напряжения в индуктивном сопротивлении первичной обмотки I1 x1.

I1 *x1 = 16,5*38,99 = 643,3 B.

Перед построением диаграммы следует выбрать масштаб тока mi и масштаб напряжения mu.