Таким образом, в случае резонанса амплитуда колебаний растет линейно со временем (до тех пор, пока колебания не перестанут быть малыми и вся излагаемая теория перестанет быть применимой).
Выясним еще, как выглядят малые колебания вблизи резонанса, когда
у = ω + ε, где ε — малая величина. Представим общее решение в комплексном виде, как
(2,6)Так как величина
мало меняется в течение периода 2π/ω множителя , то движение вблизи резонанса можно рассматривать как малые колебания, но с переменной амплитудойОбозначив последнюю через С, имеем:
Представив А и В соответственно в виде
и получим:(2,7)
Таким образом, амплитуда колеблется периодически с частотой ε, меняясь между двумя пределами
Это явление носит название биений.
Уравнение движения (2,2) может быть проинтегрировано и в общем виде при произвольной вынуждающей силе F(t), Это легко сделать, переписав его предварительно в виде
или (2,8)где введена комплексная величина
(2,9)Уравнение (2,8) уже не второго, а первого порядка. Без правой части его решением было бы
с постоянной А. Следуя общему правилу, ищем решение неоднородного уравнения в виде
и для функции A(t) получаем уравнение
Интегрируя его, получим решение уравнения (2,8) в виде
(2, 10)
где постоянная интегрирования ε0 представляет собой значение ε в момент времени t = 0. Это и есть искомое общее решение; функция x(t) дается мнимой частью выражения (2,10).
Энергия системы, совершающей вынужденные колебания, разумеется, не сохраняется; система приобретает энергию за счет источника внешней силы. Определим полную энергию, передаваемую системе за все время действия силы (от - ∞ до + ∞), предполагая начальную энергию равной нулю. Согласно формуле (2,10) (с нижним пределом интегрирования - ∞ вместо нуля и с
ξ(-∞) = 0) имеем при t → ∞:
С другой стороны, энергия системы как таковой дается выражением
(2,11)Подставив сюда | ξ (∞) |2, получим искомую передачу энергии
в виде
(2,12)она определяется квадратом модуля компоненты Фурье силы F(t) с частотой, равной собственной частоте системы.
В частности, если внешняя сила действует лишь в течение короткого промежутка времени (малого по сравнению с 1/ω), то можно положить
.Тогда
Этот результат заранее очевиден: он выражает собой тот факт, что кратковременная сила сообщает системе импульс ∫F dt, не успев за это время произвести заметного смещения.
Колебания систем со многими степенями свободы
Теория свободных колебаний систем с несколькими (s) степенями свободы строится аналогично тому, как было рассмотрено в одномерных колебаниях.
Пусть потенциальная энергия системы U как функция обобщенных координат qi (i = 1, 2, .,., s) имеет минимум при qi=qi0. Вводя малые смещения
xi = qi – qi0 (3,1)
и разлагая по ним U с точностью до членов второго порядка, получим потенциальную энергию в виде положительно определенной квадратичной формы
где мы снова отсчитываем потенциальную энергию от ее минимального значения. Поскольку коэффициенты kik и kki входят в (3, 2) умноженными на одну и ту же величину xi xk, то ясно, что их можно всегда считать симметричными по своим индексам
В кинетической же энергии, которая имеет в общем случае вид
полагаем в коэффициентах qi = qi0 и, обозначая постоянные aik(qo) посредством mik , получаем ее в виде положительно определенной квадратичной формы
(3,3)Коэффициенты mlk тоже можно всегда считать симметричными по индексам
mik = mki
Таким образом, лагранжева функция системы, совершающей свободные малые колебания:
(3, 4)Составим теперь уравнения движения. Для определения входящих в них производных напишем полный дифференциал функции Лагранжа
Поскольку величина суммы не зависит, разумеется, от обозначения индексов суммирования, меняем в первом и третьем членах в скобках i на k, a k на i; учитывая при этом симметричность коэффициентов mik и kik, получим:
Отсюда видно, что
Поэтому уравнения Лагранжа
(3,5)Они представляют собой систему s(i = l, 2, … , s) линейных однородных дифференциальных уравнений с постоянными коэффициентами.
По общим правилам решения таких уравнений ищем s неизвестных функций xk(t) в виде
(3,6)
где Аk — некоторые, пока неопределенные, постоянные. Подставляя (3,6) в систему (3,5), получаем по сокращении на
систему линейных однородных алгебраических уравнений, которым должны удовлетворять постоянные Аk:(3,7)
Для того чтобы эта система имела отличные от нуля решения, должен обращаться в нуль ее определитель
(3,8)
Уравнение (3,8)—так называемое характеристическое уравнение — представляет собой уравнение степени s относительно ω2. Оно имеет в общем случае s различных вещественных положительных корней ω²a,
а=1, 2, … , s (в частных случаях некоторые из этих корней могут совпадать). Определенные таким образом величины ωа называются собственными частотами системы.
Вещественность и положительность корней уравнения (3,8) заранее очевидны уже из физических соображений. Действительно, наличие у ω мнимой части означало бы наличие во временной зависимости координат хk (3,6) (а с ними и скоростей xk) экспоненциально убывающего или экспоненциально возрастающего множителя. Но наличие такого множителя в данном случае недопустимо, так как оно привело бы к изменению со временем полной энергии E=U+T системы в противоречии с законом ее сохранения.
В том же самом можно убедиться и чисто математическим путем. Умножив уравнение (3,7) на
и просуммировав затем по i, получим:откуда
Квадратичные формы в числителе и знаменателе этого выражения вещественны в силу вещественности и симметричности коэффициентов kik и mik , действительно,
Они также существенно положительны, а потому положительно и ω2.
После того как частоты ωанайдены, подставляя каждое из них в уравнения (3,7), можно найти соответствующие значения коэффициентов Аk. Если все корни ωахарактеристического уравнения различны, то, как известно, коэффициенты Ak пропорциональны минорам определителя (3,8),в котором ω заменена соответствующим значением ωа, обозначим эти миноры через ∆ka. Частное решение системы дифференциальных уравнений (3,5) имеет, следовательно, вид