Рассмотрим малый элемент, который в процессе деформации изменил свою конфигурацию. На рисунке показана одна из граней, совпадающая с плоскостью осей X и Y:
аналогично
Угол сдвига — это угол, на который изменится первоначально прямой угол, т.е.
Аналогично определяется и другие компоненты тензора деформаций. Итак! Соотношения Коши:
; ; ; ; ;Шесть компонент тензора деформаций выражаются через три компоненты вектора перемещения. Отсюда следует, что компоненты тензора деформаций не являются независимыми. И в самом деле, они связаны соотношениями называемыми уравнениями совместности деформаций.
Условиям совместности деформаций можно придать следующий смысл. Разрежем тело на малые элементы, деформируем каждый из элементов в отдельности и соберём из деформированных элементов тело. Тогда, если деформации правильные, т.е. удовлетворяющие уравнениям совместности, то собранное тело не будет иметь разрывов и пустот.
Будем основываться на известном нам законе Гука для одноосного состояния
,и принципе независимости действия сил.
Обратим внимание на такой факт, что с точностью до малых высшего порядка, нормальные напряжения не вызывают сдвигов, а в свою очередь касательные напряжения не вызывают удлинений.
Рассмотрим малый элемент (рис.50).
Воспользуемся принципом независимости действия сил.
1) Пусть действуют только напряжения
. , тогда ;2)
; ; ;3)
; ; ;При совместном действии всех трёх напряжений
Аналогично определяется и деформации
и .В результате получаем уравнения называемые обобщённым законом Гука.
; ; ;К таким уравнениям нужно добавить ещё три соотношения
; ;Три дифференциальных уравнения равновесия, шесть соотношений Коши и шесть соотношений обобщённого закона Гука составляют систему уравнений теории упругости, в которых неизвестными будут шесть компонент тензора напряжений, шесть компонент тензора деформаций и три компоненты перемещения.