Табл.5 Применение ферритовых сердечников, обеспечивающих достижение добротности не менее 100.
1 - телеграф 2 - телефон 3 - телефонная несущая 4 - звукозапись
Радио, радиолокация: 5 - ДВ 6 - СВ 7 - КВ1 8 - КВ2 9 - УКВ 10 - СВЧ.
3.2. Запоминающие и переключающиеся цепи
Успехи в развитии магнитомягких материалов в 60-е годы содействовали быстрому развитию математических машин и позволили осуществить новые конструкции электронных телефонных станций. Элементы, в которых эти материалы используются совместно с полупроводниковыми диодами или транзисторами, почти вытеснили менее надежные, имеющие большие габариты и менее экономичные детали, какими являются электронные лампы и реле. При проектированиикрупных машин для обработки информации нельзя обойтись без этих элементов.
Для указанных устройств обычно применяются металлические и ферритовые магнитные материалы с прямоугольной петлей гистерезиса. В некоторых запоминающих цепях, кроме этих материалов, применяются и другие.
3.3. Принципы действия запоминающих и переключающихся цепей с сердечниками с прямоугольной петлей гистерезиса
Толчок развитию запоминающих устройств на основе магнитных материалов дали постоянно повышающиеся к ЭВМ. По принципу действия элементы запоминающих устройств делятся на две группы. Первые требуют постоянного обновления поступающей информации. Так работают запоминающие устройства, основанные на принципе линии задержки. Вторые длительно сохраняют записанную информацию. У магнитных запоминающих устройств этой группы носителем информации является остаточная индукция магнитного материала. Эти устройства также делятся на два типа. У первого магнитный материал перемещается относительно катушки, применяемой для записи или чтения. Информацию можно получить только в определенный момент, а именно тогда, когда запись проходит как раз под считывающей катушкой. У второго типа, т.е. статических устройств магнитной памяти и других подобных им усройств, запись и чтение производятся перемагничиванием неподвижного ферромагнитного материала. Информацию можно получить в любой момент времени. Запоминающие устройства осуществляют запись информации с помощью двух возможных состояний запоминающего элемента, чаще всего обозначаемых индексами 0 и 1.
Магнитные переключающиеся цепи всегда имеют электрический выход, т.е. обмотку из провода с определенным сопротивлением. Переключение осуществляется изменением индуктивности или же изменением взаимосвязи у трансформатора, а поэтому может применяться только при переменном или импульсном напряжении и непригодно для постоянного тока.
Чтобы обосновать требования к магнитным материалам этих цепей, опишем кратко работу матричного магнитного запоминающего устройства, матричного переключающего устройства и устройства магнитной памяти, основанного на принципе односердечникового магнитного усилителя, где чаще всего применяются ферритовые сердечники с прямоугольной петлей гистерезиса.
Запись информации в статические устролйства магнитной памяти заключается в перемагничивании тороидального сердечника из одного состояния в обратное. Два возможных состояния запоминающего элемента требуют представления информвции в бинарном (двоичном) виде, а поэтому необходимо значительное количество сердечников. Металлические сердечники дороги и имеют большие размеры, а поэтому развитие запоминающих устройств большой емкости стало возможно лишь после появления ферритов с ППГ. Рассмотрим принцип действия устройства на одном сердечнике (рис. 6). Через записывающую обмотку А проходит положительный токовый импульс, который намагничивает сердечник до насыщения. После исчезновения импульса сердечник будет находиться в состоянии индукции Вr, что соответствует записи 1. Состоянию 0 соответствует намагничивание в обратном направлении. Если теперь через обмотку В пройдет другой импульс отрицательной полярности, то сердечник перемагничивается из состояния 1 в состояние 0 и в выходной обмотке С индуцируется импульс напряжения. Если сердечник намагничен в отрицательном направлении, т.е. находится в состоянии 0, то считывающий импульс в обмотке В не вызовет перемагничивания сердечника.
Рис.7 Чтение и запись на магнитный сердечник
Выходное напряжение в обмотке С будет незначительным. Основанные на этом принципе устройства памяти имеют тот недостаток, что при считывании снимается первоначальная запись и информацию необходимо снова записывать. Существенными достоинствами такого устройства являются доступность информации в любой момент, очень малое время записи (порядка наносекунд) и сохранение информации без потребления энергии.
Практические магнитные матричные устройства памяти работают по принципу совпадения импульсов в двух обмотках. Такую схему иллюстрирует рис.8. Все обмотки имеют только один виток, а сердечники надеты в местах пересечения проводов А и В. Через провода А и В проходят импульсы тока такой величины, чтобы импульс тока в одном проводе не мог перемагнитить сердечник, а суммарный импульс тока в двух проводах перемагничивал его. При записи 1 через определенные провода А и В пройдут токи величиной Im/2, которые намагничивают только тот сердечник, в котором их действие складывается. Состояние остальных сердечников не изменяется.
Рис.8 Матричное запоминающее устройство
При чтении информации, записанной в сердечнике, в провода А и В подается импульс тока -Im/2, т.е. такой же, как для записи 0. Во всех сердечниках возникает магнитное поле с напряженностью -Hm/2, за исключением пересечения проводов А и В, где возникает суммарное поле с напряженностью Hm. Если при этом сердечник имел положительную остаточную индукцию, то он перемагничивается и в выходной обмотке С индуцируется импульс.
Сердечники запоминающих элементов не имеют идеально прямоугольной петли гистерезиса, а поэтому небольшой выходной импульс возникает и в сердечниках с состоянием 0. При большом числе сердечников в запоминающем устройстве важно, чтобы эти нежелательные импульсы оставались достаточно малыми и их можно было отличить от полезного сигнала. На записанную информацию повторное намагничивание половинными импульсами обратной полярности не должно оказывать влияния.
Трудно устранить нежелательные импульсы при чтении информации. Считывающая обмотка проходит через сердечники в попеременном направлении, чтобы нежелательные сигналы всех обмоток по возможности компенсировали друг друга. Это предполагает полную идентичность сердечников. При изготовлении отдельные сердечники получаются различными, а поэтому их необходимо сортировать. Для построения матрицы запоминающего устройства применяются только сердечники, имеющие различия лишь в очень узких допусках. Хорошие результаты получаются при дифференцировании импульсов по длительности. У большинства типов сердечников вредный импульс значительно короче импульса, вызванного перемагничиванием. Поэтому выходное напряжение считывается лишь после окончания вредного импульса, благодаря чему их различие достигает отношения около 200:1. Этот метод называется методом задержки считывания. Свойства запоминающего устройства улучшают и другие многочисленные меры, как, например, считывающие импульсы различной длительности, заканчивающиеся в один и тот же момент. Нежелательный сигнал одного ряда исчезает раньше, чем приходит импульс в другой ряд, и только половина сердечников оказывает влияние на выходной сигнал. Самый простой способ дифференциации - дифференциация по максимальному значению. Различие при этом достигает соотношения до 30:1.