Если движущееся тело полностью погружено в вязкую среду и расстояния от тела до границ среды много больше размеров самого тела, то в этом случае говорят о трении или сопротивлении среды. При этом участки среды (жидкости или газа), непосредственно прилегающие к движущемуся телу, движутся с такой же скоростью, как и само тело, а по мере удаления от тела скорость соответствующих участков среды уменьшается, обращаясь в нуль на бесконечности. Сила сопротивления среды зависит от ее вязкости, от формы тела, от скорости движения тела относительно среды. Например, при медленном движении шарика в вязкой жидкости силу трения можно найти, используя формулу Стокса:
F= - 6RV (2)
Пропорциональность силы трения скорости движения тела в среде выполняется только при малых скоростях движения. Критерием малости служит безразмерное число Рейнольдса:
Re=VR (3)
Здесь - плотность среды, а R- характерный размер тела. Для шара таким размером является его радиус. Для тела определенной формы существует максимальное (критическое) число Рейнольдса, при котором трение остается вязким, например, для шара это число 100. При больших скоростях движения характер силы трения меняется величина силы трения перестает быть пропорциональной скорости движения тела.
§4. Перекрестные процессы переноса в твердых телах.
Явления переноса - необратимые процессы пространственного переноса массы, импульса, энергии или др. Причины этих процессов- пространственные неоднородности состава, скорости движения частиц системы, температуры. Перенос происходит в направлении, обратном градиенту концентрации, температуры или др., что приближает систему к равновесию.
Явления переноса в покоящейся среде осуществляются только в результате хаотического движения молекул (молекулярный перенос). В текущих средах к этому механизму переноса добавляется конвективный перенос, а при высоких числах Рейнольдса еще и турбулентный перенос, связанный с хаотическим перемещением вихрей. Общую феноменологическую теорию явлений переноса, применимую к газообразной, жидкой или твердой системе, дает термодинамика необратимых процессов.
Перенос массы (диффузия) происходит при наличии в системе градиента концентрации, а перенос теплоты (теплопроводность) - вследствие градиента температуры. Строго говоря, движущей силой диффузии является градиент химического потенциала, который лишь вблизи положения равновесия приводится к градиенту концентрации, фигурирующему в уравнении закона Фика. Однако практическая необходимость выражать диффузионный поток через градиент химического потенциала (что существенно усложняет задачу) возникает лишь в специальных случаях, например при расчете процесса вблизи критической точки. Законы Фика и Фурье не учитывают взаимное влияние потоков при переносе массы и теплоты (перекрестные процессы).
При существенных градиентах температуры и давления (последнее может быть вызвано, например, внешним полем) необходим учет дополнительного потока массы вследствие градиентов температуры (термодиффузия) и градиентов давления (бародиффузия), а также учет дополнительного потока теплоты, вызванного переносом массы. При определенных условиях для перекрестных потоков выполняется теорема Онсагера.
Гипотезу, согласно которой перенос определяется градиентом параметра в рассматриваемой точке пространства в данный момент времени, используют для самых различных процессов, например при описании диффузии в пористых материалах, продольного перемешивания в каналах, заполненных насадкой или зернистым слоем, и т.д. Из этой гипотезы, в частности, следует, что локальные концентрационные возмущения проявляются мгновенно во всех точках системы. Но скорость распространения концентрационных возмущений не может быть больше средней скорости молекул. Учет конечной скорости переноса массы, импульса или теплоты приводит к релаксационным уравнениям. В простейшем случае одномерной диффузии в отсутствие химических превращений связь между плотностью диффузионного потока и градиентом концентрации в системе координат, неподвижной относительно среды, имеет вид:
где De- коэффициент эффективной диффузии (при рассмотрении молекулярных процессов перехода Dе следует заменить на коэффициент D); τ-время релаксации диффузионного процесса, характеризующее "память среды"; t- время. По порядку величины τ совпадает со временем свободного пробега диффундирующих частиц. Аналогичные уравнения могут быть записаны для плотности потока импульса и теплоты.
Заключение
Все рассмотренные примеры характеризуются общим свойством — переносом некоторого признака (энергии в первом примере, вещества во втором и импульса в третьем) из одних областей системы в другие. Неслучайно поэтому, что явления такого рода называются явлениями переноса. Каждое из них характеризуется своим коэффициентом переноса, и задача теории — уметь их вычислять. В общем случае это очень трудная задача, до сих пор полностью не решенная.
Оказывается, все три коэффициента (теплопроводности, диффузии и вязкости) пропорциональны длине свободного пробега молекул (l) и средней скорости их теплового движения (υ):
. Такая зависимость коэффициентов переноса от характеристик молекулярного движения очень естественна. Ведь средняя скорость молекул υ определяет скорость переноса того или иного признака в процессе установления равновесия. Длина же свободного пробега l появляется в формуле потому, что после каждого столкновения параметры движения молекулы определяются параметрами системы в тех местах, где эти столкновения происходят, то есть в точках, отстоящих друг от друга на расстояние l. Так, в нашем примере с теплопроводностью величина энергии, передаваемой молекулой при очередном столкновении, определяется разностью температур в тех точках среды, где произошло это и предыдущее столкновение.В данной курсовой работе были рассмотрены явления переноса в твердых телах. Явления переноса объединяют группу процессов, связанных с выравниванием неоднородностей плотности, температуры или скорости упорядоченного перемещения отдельных слоев вещества.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Ашкрофт Н., Мермин Н. Физика твердого тела: Пер. с англ. В 2-х т. М.: Мир, 1979. Т. 1, Т. 2
2. Городецкий Е.Е. О явлениях переноса //Квант. — 1986. — № 9. — С. 27-29.
3. Епифанов. Г. И. Физика твердого тела. М.: Высшая школа,1977.
4. Зисман Г. А., Тодес О. М. Курс общей физики. В 3 т. – М.: Наука, 1995. – 343 с.
5. Кухлинг Х. Справочник по физике: Пер. с нем. – М.: Мир, 1983. – 520 с.
6. Савельев И. В. Курс общей физики. М.: Наука, 1986.Т. III.
7. Сивухин Д. В. Общий курс физики. М.: Наука, 1979. Т. III.
8. Толубинский E В Теория процессов переноса. К., 1969;
9. Шьюмон П., Диффузия в твердых телах, пер. с англ., М., 1966