Уравнение теплопроводностиКоличественно явление теплопроводности во всех телах описывается уравнением Фурье, согласно которому количествотепла dQ, прошедшее за время dt через некоторую площадку s,перпендикулярную направлению распространения тепла,выражается формулой:
Как следует из формулы (4) К измеряется в системе СИ в единицах Дж/м·с·К.
Величина dT/dl характеризует быстроту изменения температуры в направлении распространения тепла и численно равна изменению температуры тела на единице длины в этом направлении. Она называется градиентом температуры.
Знак минус в уравнении Фурье указывает, что поток тепла направлен в сторону, противоположную градиенту температуры.
Коэффициент К, зависящий от физической природы вещества и его состояния, называется коэффициентом теплопроводности. Физический смысл его можно установить из следующих соображений. Если положить в формуле (4) s = 1; dt = 1; и dT/dl = 1, то dQ = K. Это означает, что коэффициент теплопроводности численно равен количеству тепла, переносимому за 1 секунду через единицу площади, перпендикулярной направлению распространения тепла, если градиент температуры равен единице.
Метод определения коэффициента теплопроводности.
В данной работе для определения коэффициента теплопроводности К используется уравнение Фурье (4). При этом величины dQ/dt, s , dT/dl измеряются опытным путем. Исследуемый материал взят в виде сплошного медного стержня круглого сечения. Для создания потока тепла вдоль стержня его концы помещены в термостаты А и В (рис. 2).
Рис.2
Термостат А представляет собой металлическую коробку цилиндрической формы, в которую впаяны две трубки для входа и выхода водяного пара. Такое же устройство имеет термостат В, через который протекает холодная вода. Расход воды через термостат В поддерживается постоянным с помощью сосуда Д. Это достигается постоянством уровня воды в сосуде Д, для чего он снабжен трубкой Н, служащей для отвода излишков воды. Контроль за уровнем воды в сосуде Д осуществляется с помощью водомерной стеклянной трубки h. Вода, протекающая через термостат В, служит приемником тепла, переносимого через исследуемый стержень от его горячего конца к холодному. Термометры Т1 и Т2 позволяют определить увеличение температуры воды. В точках «а» и «в» исследуемого стержня в специальных углублениях помещаются спаи термопары, соединенной с гальванометром Г и служащей для определения градиента температуры. Стержень помещен в ящик, наполненный пористым веществом лигнином, являющимся хорошим теплоизоляционным материалом. При хорошей изоляции стержня можно пренебречь отдачей тепла через боковую поверхность и считать, что тепло распространяется только вдоль стержня. Через некоторое время после подачи пара в термостат А в стержне устанавливается стационарный процесс переноса тепла, характеризуемый постоянством температуры в каждом сечении стержня. Такое состояние возможно, если через любое поперечное сечение за равные промежутки времени проходит одинаковое количество тепла (dQ/dt = const).
Из уравнения (4) следует, что при этом градиент температуры dT/dl можно считать одинаковым для всех сечений стержня. Поэтому он может быть определен в виде:
где l – расстояние между двумя сечениями стержня, ΔТ – разность температур в этих сечениях, определяемая по показаниям гальванометра.
Для определения dQ/dt (количества тепла, протекающего через поперечное сечение стержня за 1 секунду) поступают следующим образом. При стационарном процессе переноса тепла:
За время t теплота Q будет передана воде, протекающей через термостат В. При этом вода нагреется от Т1 до Т2 (см. рис. 3). Если за это же время через термостат В протечет количество воды, масса которой М, то
Или (7)
где с – удельная теплоемкость воды, Т1 и Т2 – показания соответствующих термометров.
Подставляя формулы (5), (6) и (7) в уравнение Фурье (4). Получим формулу для определения К:
S – площадь поперечного сечения стержня.
1.2. Теплопроводность металла
Наиболее впечатляющим успехом модели Друде в то время, когда она была предложена, явилось объяснение эмпирического закона Видемана и Франца (1853г.). Закон Видемана-Франца утверждает, что соотношение
Для объяснения этой закономерности в рамках модели Друде предполагают, что основная часть теплового потока в металле переносится электронами проводимости. Это предположение основано на том эмпирическом наблюдении, что металлы проводят тепло гораздо лучше, чем диэлектрики. Поэтому теплопроводность, обусловленная ионами, которые имеются и в металлах, и в диэлектриках, гораздо менее важна по сравнению с теплопроводностью, обусловленной электронами проводимости (присутствующими только в металлах).
Таблица 1
Экспериментальные значения коэффициента теплопроводности и числа Лоренца некоторых металлов | ||||
Элемент | 273К | 373К | ||
| χ/σT,10-8Вт ∙Ом/К2 | | χ/σT, 10-8Вт∙Ом/К2 | |
Li | 0.71 | 2.22 | 0.73 | 2.43 |
Na | 1.38 | 2.12 | ||
K | 1.0 | 2.23 | ||
Rb | 0.6 | 2.42 | ||
Cu | 3.85 | 2.20 | 3.82 | 2.29 |
Ag | 4.18 | 2.31 | 4.17 | 2.38 |
Au | 3.1 | 2.32 | 3.1 | 2.36 |
Be | 2.3 | 2.36 | 1.7 | 2.42 |
Mg | 1.5 | 2.14 | 1.5 | 2.25 |
Nb | 0.52 | 2.90 | 0.54 | 2.78 |
Fe | 0.80 | 2.61 | 0.73 | 2.88 |
Zn | 1.13 | 2.28 | 1.1 | 2.30 |
Cd | 1.0 | 2.49 | 1.0 | |
Al | 2.38 | 2.14 | 2.30 | 2.19 |
In | 0.88 | 2.58 | 0.80 | 2.60 |
Ti | 0.5 | 2.75 | 0.45 | 2.75 |
Sn | 0.64 | 2.48 | 0.60 | 2.54 |
Pb | 0.38 | 2.64 | 0.35 | 2.53 |
Bi | 0.09 | 3.53 | 0.08 | 3.35 |
Sb | 0.18 | 2.57 | 0.17 | 2.69 |
Чтобы дать определение коэффициента теплопроводности и рассчитать его, рассмотрим металлический стержень, вдоль которого температура медленно меняется. Если бы на концах стержня не было источников, и стоков тепла, поддерживающих градиент температуры, то его горячий конец охлаждался бы, а холодный – нагревался, то есть тепловая энергия текла бы в направлении, противоположном градиенты температуры. Подводя тепло к горячему концу с той же скоростью, с которой оно отсюда уходит, можно добиться установления стационарного состояния с градиентом температуры и постоянным потоком тепловой энергии. Мы определяем плотность потока тепла jq как вектор, параллельный направлению потока тепла и равный по абсолютной величине количеству тепловой энергии, пересекающей за единицу времени единичную площадь, перпендикулярную потоку. Для малых градиентов температуры поток тепла оказывается пропорциональным
где
1.3. Теплопроводность диэлектриков.
Большинство кинетических свойств металлов не имеет аналогов у диэлектриков. Однако диэлектрики, являясь электрическими изоляторами, все же проводят тепло. Конечно, они проводят не так хорошо, как металлы: верхний конец серебряной ложки, опущенной в кофе, становится горячим гораздо быстрее, чем ручка керамической чашки. Тем не менее с точки зрения модели статистической решетки в диэлектриках вообще не существует механизма, который обеспечивал бы даже небольшой перенос тепла. Действительно, в частично заполненных зонах диэлектриков содержится столь малое число электронов, что их недостаточно для выполнения этой задачи. Теплопроводность диэлектриков обусловлена в первую очередь решеточными степенями свободы.