Уравнение теплопроводностиКоличественно явление теплопроводности во всех телах описывается уравнением Фурье, согласно которому количествотепла dQ, прошедшее за время dt через некоторую площадку s,перпендикулярную направлению распространения тепла,выражается формулой:
(4)Как следует из формулы (4) К измеряется в системе СИ в единицах Дж/м·с·К.
Величина dT/dl характеризует быстроту изменения температуры в направлении распространения тепла и численно равна изменению температуры тела на единице длины в этом направлении. Она называется градиентом температуры.
Знак минус в уравнении Фурье указывает, что поток тепла направлен в сторону, противоположную градиенту температуры.
Коэффициент К, зависящий от физической природы вещества и его состояния, называется коэффициентом теплопроводности. Физический смысл его можно установить из следующих соображений. Если положить в формуле (4) s = 1; dt = 1; и dT/dl = 1, то dQ = K. Это означает, что коэффициент теплопроводности численно равен количеству тепла, переносимому за 1 секунду через единицу площади, перпендикулярной направлению распространения тепла, если градиент температуры равен единице.
Метод определения коэффициента теплопроводности.
В данной работе для определения коэффициента теплопроводности К используется уравнение Фурье (4). При этом величины dQ/dt, s , dT/dl измеряются опытным путем. Исследуемый материал взят в виде сплошного медного стержня круглого сечения. Для создания потока тепла вдоль стержня его концы помещены в термостаты А и В (рис. 2).
Рис.2
Термостат А представляет собой металлическую коробку цилиндрической формы, в которую впаяны две трубки для входа и выхода водяного пара. Такое же устройство имеет термостат В, через который протекает холодная вода. Расход воды через термостат В поддерживается постоянным с помощью сосуда Д. Это достигается постоянством уровня воды в сосуде Д, для чего он снабжен трубкой Н, служащей для отвода излишков воды. Контроль за уровнем воды в сосуде Д осуществляется с помощью водомерной стеклянной трубки h. Вода, протекающая через термостат В, служит приемником тепла, переносимого через исследуемый стержень от его горячего конца к холодному. Термометры Т1 и Т2 позволяют определить увеличение температуры воды. В точках «а» и «в» исследуемого стержня в специальных углублениях помещаются спаи термопары, соединенной с гальванометром Г и служащей для определения градиента температуры. Стержень помещен в ящик, наполненный пористым веществом лигнином, являющимся хорошим теплоизоляционным материалом. При хорошей изоляции стержня можно пренебречь отдачей тепла через боковую поверхность и считать, что тепло распространяется только вдоль стержня. Через некоторое время после подачи пара в термостат А в стержне устанавливается стационарный процесс переноса тепла, характеризуемый постоянством температуры в каждом сечении стержня. Такое состояние возможно, если через любое поперечное сечение за равные промежутки времени проходит одинаковое количество тепла (dQ/dt = const).
Из уравнения (4) следует, что при этом градиент температуры dT/dl можно считать одинаковым для всех сечений стержня. Поэтому он может быть определен в виде:
(5)где l – расстояние между двумя сечениями стержня, ΔТ – разность температур в этих сечениях, определяемая по показаниям гальванометра.
Для определения dQ/dt (количества тепла, протекающего через поперечное сечение стержня за 1 секунду) поступают следующим образом. При стационарном процессе переноса тепла:
(6)За время t теплота Q будет передана воде, протекающей через термостат В. При этом вода нагреется от Т1 до Т2 (см. рис. 3). Если за это же время через термостат В протечет количество воды, масса которой М, то
Или (7)
где с – удельная теплоемкость воды, Т1 и Т2 – показания соответствующих термометров.
Подставляя формулы (5), (6) и (7) в уравнение Фурье (4). Получим формулу для определения К:
(8)S – площадь поперечного сечения стержня.
1.2. Теплопроводность металла
Наиболее впечатляющим успехом модели Друде в то время, когда она была предложена, явилось объяснение эмпирического закона Видемана и Франца (1853г.). Закон Видемана-Франца утверждает, что соотношение
теплопроводности к электропроводности для большинства металлов прямо пропорционально температуре, причем коэффициент пропорциональности с достаточной точностью одинаков для всех металлов. Эта закономерность видна из таблицы , где приведены измеренные значения теплопроводности и отношение (называемое числом Лоренца) для некоторых металлов при двух температурах, 273 К и 373К.Для объяснения этой закономерности в рамках модели Друде предполагают, что основная часть теплового потока в металле переносится электронами проводимости. Это предположение основано на том эмпирическом наблюдении, что металлы проводят тепло гораздо лучше, чем диэлектрики. Поэтому теплопроводность, обусловленная ионами, которые имеются и в металлах, и в диэлектриках, гораздо менее важна по сравнению с теплопроводностью, обусловленной электронами проводимости (присутствующими только в металлах).
Таблица 1
Экспериментальные значения коэффициента теплопроводности и числа Лоренца некоторых металлов | ||||
Элемент | 273К | 373К | ||
χ/σT,10-8Вт ∙Ом/К2 | χ/σT, 10-8Вт∙Ом/К2 | |||
Li | 0.71 | 2.22 | 0.73 | 2.43 |
Na | 1.38 | 2.12 | ||
K | 1.0 | 2.23 | ||
Rb | 0.6 | 2.42 | ||
Cu | 3.85 | 2.20 | 3.82 | 2.29 |
Ag | 4.18 | 2.31 | 4.17 | 2.38 |
Au | 3.1 | 2.32 | 3.1 | 2.36 |
Be | 2.3 | 2.36 | 1.7 | 2.42 |
Mg | 1.5 | 2.14 | 1.5 | 2.25 |
Nb | 0.52 | 2.90 | 0.54 | 2.78 |
Fe | 0.80 | 2.61 | 0.73 | 2.88 |
Zn | 1.13 | 2.28 | 1.1 | 2.30 |
Cd | 1.0 | 2.49 | 1.0 | |
Al | 2.38 | 2.14 | 2.30 | 2.19 |
In | 0.88 | 2.58 | 0.80 | 2.60 |
Ti | 0.5 | 2.75 | 0.45 | 2.75 |
Sn | 0.64 | 2.48 | 0.60 | 2.54 |
Pb | 0.38 | 2.64 | 0.35 | 2.53 |
Bi | 0.09 | 3.53 | 0.08 | 3.35 |
Sb | 0.18 | 2.57 | 0.17 | 2.69 |
Чтобы дать определение коэффициента теплопроводности и рассчитать его, рассмотрим металлический стержень, вдоль которого температура медленно меняется. Если бы на концах стержня не было источников, и стоков тепла, поддерживающих градиент температуры, то его горячий конец охлаждался бы, а холодный – нагревался, то есть тепловая энергия текла бы в направлении, противоположном градиенты температуры. Подводя тепло к горячему концу с той же скоростью, с которой оно отсюда уходит, можно добиться установления стационарного состояния с градиентом температуры и постоянным потоком тепловой энергии. Мы определяем плотность потока тепла jq как вектор, параллельный направлению потока тепла и равный по абсолютной величине количеству тепловой энергии, пересекающей за единицу времени единичную площадь, перпендикулярную потоку. Для малых градиентов температуры поток тепла оказывается пропорциональным
(закон Фурье):где
- коэффициентом теплопроводности. Он положителен, поскольку направление потока тепла противоположно направлению градиента температуры.1.3. Теплопроводность диэлектриков.
Большинство кинетических свойств металлов не имеет аналогов у диэлектриков. Однако диэлектрики, являясь электрическими изоляторами, все же проводят тепло. Конечно, они проводят не так хорошо, как металлы: верхний конец серебряной ложки, опущенной в кофе, становится горячим гораздо быстрее, чем ручка керамической чашки. Тем не менее с точки зрения модели статистической решетки в диэлектриках вообще не существует механизма, который обеспечивал бы даже небольшой перенос тепла. Действительно, в частично заполненных зонах диэлектриков содержится столь малое число электронов, что их недостаточно для выполнения этой задачи. Теплопроводность диэлектриков обусловлена в первую очередь решеточными степенями свободы.