Амплитудные (пиковые) вольтметры характеризуются невысокой чувствительностью (порог чувствительности
) и широкой полосой частот (до 1 ГГц). Если применить пиковый вольтметр с закрытым входом, то потеря постоянной составляющей импульсного напряжения вызывает погрешность и при малой скважности. Поэтому в технических характеристиках импульсных вольтметров, выполненных с амплитудным преобразованием, указаны предельные значения длительностей импульсов и их скважностей, при которых показания вольтметра содержат нормированные погрешности.Для точных измерений импульсных напряжений преимущественно применяются вольтметры компенсационные (рис. 6, б). Здесь амплитудное значение измеряемого напряжения, заряжающее конденсатор С через диод Д, компенсируется (уравновешивается) постоянным образцовым напряжением
(рис. 6, в). В момент компенсации ток гальванометра равен нулю и образцовое напряжение равно . Значение UKобразцового напряжения измеряется точным вольтметром постоянного тока.С помощью вольтметров компенсационного типа можно также измерять амплитудное значение синусоидального напряжения и напряжение постоянного тока. Погрешность определяется чувствительностью указателя компенсации — гальванометра и точностью установки и измерения образцового напряжения. Для этой цели часто применяют цифровые вольтметры. Для измерения очень коротких импульсов разработаны более совершенные вольтметры с автокомпенсацией (рис, 7). Принцип автокомпенсации заключается в преобразовании измеряемого напряжения в компенсирующее с последующим точным измерением его значения.
Входной импульс через диод Д заряжает конденсатор
до значения , что обеспечивается малой постоянной времени цепи заряда соизмеримой с длительностью импульса (емкость конденсатора — единицы пикофарад). На конденсаторе С2образуется напряжение UC2, которое через резистор поступает на конденсатор в качестве компенсирующего. Элементы нагрузки второго детектора и выбираются так, чтобы их постоянная времени была много большей длительности периода следования измеряемых импульсов: . Конденсатор С2 в интервалах между импульсами разряжается незначительно. На вход усилителя У поступает разность напряжений ; выходное напряжение усилителя детектируется и подзаряжает конденсатор С2. Чем больше коэффициент усиления усилителя, тем ближе значение к . Напряжение измеряется цифровым вольтметром постоянного тока ЦВ.Преимущества автокомпенсационных вольтметров заключаются в отсутствии индикатора момента компенсации — гальванометра и источника образцового напряжения, а также в уменьшении погрешности измерения.
5. Расчет делителя
Пределы измерения выбираются кнопочным переключателем путем включения соответствующего резистора R8 (рис.8) в цепь питания стрелочного прибора (микроамперметра).
Рис.8. Схема выбора пределов измерения.
Делитель 1:10 напряжения смешанного типа представлен на рис. 9:
Рис.9. Делитель напряжения.
Для расчета делителя напряжения 1:10 запишем соотношение для коэффициента преобразования:
Тогда для делителя 1:10 получим:
.Примем
, . А для емкостей получим: . Примем , тогда6. Пределы измерений
Прибор имеет четыре предела измерения амплитуды импульсов: 2, 5, 10 и 20 В.
7. Погрешности
Погрешность измерения амплитуды исследуемого напряжения определяется разрядом конденсатора за период измеряемого напряжения:
,где Т — период измеряемого сигнала;
— постоянная времени цепи разряда.Относительная погрешность измерения
считая, что получаем: или с учетом разложения в ряд функции: ,ограничиваясь первыми двумя членами ряда, имеем:
,Где
- частотаИз выражения следует, что погрешность тем больше, чем ниже частота измеряемого напряжения. Основная погрешность связана с частотой следования импульсов. Дополнительная связана со скважностью импульсов и их длительностью.
Выводы
Используя электронную схему регистрации напряжения при помощи амплитудного преобразователя с открытым или с закрытым входом можно измерить пиковое напряжение, что позволяет измерять импульсные напряжения.
Измерение импульсных напряжений при помощи компенсационных и автокомпенсационных вольтметров позволяет достичь большей точности.